Что такое симбиоз бактерии с другим организмом. Симбиоз – основа растительной жизни

Контрольная работа № 1

Вариант №8

    Взаимоотношение микроорганизмов: симбиоз, метабиоз, антагонизм.

    Производство пива: осветление пива, его розлив. Требования ГОСТа к качеству пива.

1.Взаимоотношение микроорганизмов: симбиоз, метабиоз, антагонизм.

В конкретных экологических условиях между разными группами микробов устанавливаются определенные взаимоотношения, характер которых зависит от физиологических особенностей и потребностей совместно развивающихся микробов. Кроме того, микроорганизмы вступают в различного рода взаимоотношения не только между собой, но и с простейшими, высшими растениями и другими группами организмов, составляющих почвенное население.

Сосуществованием , или нейтрализмом, называется такая форма взаимоотношений, когда организмы, развиваясь совместно, не приносят друг другу ни вреда, ни пользы. Метабиоз - использование продуктов жизнедеятельности одних микробов другими.

Микроорганизмы распространяются повсюду, они населяют почву, воду, воздух. Средой обитания являются растения, холоднокровные и теплокровные животные, а также организм человека.

Большинство микроорганизмов в естественных условиях находится в определенных взаимоотношениях друг с другом, а также с организмом своих хозяев - растений, животных, человека. Эти отношения сложились в процессе эволюции. Ассоциативные взаимоотношения или сожительство разных видов микроорганизмов, а также с другими формами жизни получили название симбиоза. Типы, или формы, симбиотических отношений чрезвычайно разнообразны. Крайними из них являются мутуализм и антагонизм.

Антагонизм - такие взаимоотношения между разными видами микробов, при котором один из партнеров наносит вред другому. Это связано с образованием и выделением микробами-антагонистами метаболических продуктов, ингибирующих размножение многих организмов. К таким продуктам относятся органические кислоты (изменяющие рН среды), антибиотики, бактериоцины и др. Так, например, многие актиномицеты являются антагонистами бактерий, а молочнокислые бактерии обладают антагонистическими свойствами в отношении гнилостных бактерий и т.д.

Метабиоз (от мета... и греч. bios - жизнь) - взаимоотношение между микроорганизмами

при использовании какого-либо одного сложного субстрата. Так, например, при использовании белковых веществ последовательно могут принимать участие в этом процессе аммонификаторы, нитри-фикаторы и денитрификаторы. Метабиоз наблюдается также в процессе совместного использования субстрата (синтрофия). Синтрофными называют связи, при которых субстрат используется одновременно несколькими видами микробов.

Метаболическая группа связей характеризуется свойством микроорганизмов образовывать в процессе своей жизнедеятельности разнообразные продукты обмена веществ (метаболизма) и выделять их в окружающую среду. В результате этого одни микроорганизмы могут использовать отдельные продукты метаболизма (органические кислоты, аминокислоты, витамины и др.), для других организмов такие продукты обмена, как антибиотики, сероводород, пероксид водорода и др., являются ингибиторами роста.

Характер связи и определяет специфику взаимоотношений организмов.

Симбиоз. Симбиотические взаимоотношения микроорганизмов характеризуются тем, что два или более вида микробов при совместном развитии создают для себя взаимовыгодные условия. Типичным примером такого взаимоотношения является факт, описанный еще в 1863 г. Пастером в отношении совместного развития аэробных и анаэробных микроорганизмов. Развиваясь в аэробных условиях, микробы поглощают кислород и тем самым создают благоприятные условия для развития анаэробов. Имеются и другие примеры, иллюстрирующие это явление. Так, в кефирных зернах одновременно развиваются молочнокислые бактерии и дрожжи, получая при этом взаимовыгодные условия: молочнокислые бактерии, испытывая потребность в витаминах, получают их в результате развития дрожжей; в то же время дрожжи, благодаря подкислению среды молочнокислыми бактериями, получают благоприятные условия для своего развития.

Примерно то же самое происходит и в «чайном грибе», где совместно развивается несколько видов уксуснокислых бактерий и дрожжей. В этом случае уксуснокислые бактерии превращают сахарозу в глюкозу и фруктозу, которые затем этой же группой бактерий окисляются до глюконово и 5-кетоглюконовой кислот. Образовавшиеся кислоты используются дрожжами. Дрожжи, синтезируя витамины, обеспечивают потребность в них уксуснокислых бактерий.

К симбиотическому типу взаимоотношений относят п. р о т о к о-операцию, в основе, которой лежит принцип совместного использования субстрата; комменсализм - мирное сожительство разных видов микроорганизмов; мутуализм - совместное сожительство микроорганизмов, не способных существовать раздельно.

Антагонизм. В естественных условиях развития микробов довольно часто могут наблюдаться явления не только взаимно благоприятные, но и такие, при которых один вид микроорганизмов тем или иным способом угнетает или полностью подавляет рост и развитие других видов. Явление антагонизма широко распространено среди бактерии, актиномицетов, грибов и других организмов. Подробное рассмотрение антагонизма приведено ниже.

Хищничество. Исходя из общего определения понятия антагонизма, хищничество также должно быть, отнесено к антагонизму, однако в этом случае имеет место не только гибель клеток другого вида. Процесс хищничества состоит в том, что некоторые микробы поглощают клетки других видов микроорганизмов и используют их в качестве питательного материала. Часто подбор микробов для использования их как пищевых объектов носит избирательный характер.

К числу микроорганизмов-хищников относятся главным образом микроформы (миксобактерии, миксоамебы, миксомицеты).

Имшенецкий и Кузюрина (1951) описали наиболее простой тип хищничества, характерный для миксококков. Последние могут использовать в качестве источника питания преимущественно продукты лизиса живых клеток других бактерий. Причем мертвые клетки бактерий менее пригодны. Жизнь микроорганизмов в природных условиях обычно протекает совместно с другими живыми существами- м растениями, животными. Взаимоотношения между этими организмами носят весьма разнообразный характер и существенно сказываются на их развитии.

Симбиоз - это взаимоотношения, устанавливающиеся при совместном обитании в одной и той же среде двух или более видов микробов, при которых они не мешают друг другу в развитии, или когда такое совместное обитание является даже необходимым для них. Примером могут служить отношения при одновременном нахождении на пищевых продуктах анаэробных и аэробных микробов. Поглощая кислород, аэробы создают благоприятные условия для развития анаэробов. В этой связи понятно, почему иногда продукты, хранящиеся в обычных условиях, подвергаются анаэробной порче и становятся даже ядовитыми (ботулизм).

Взаимополезные отношения устанавливаются между дрожжами и молочно-кислыми бактериями в опаре и тесте при производстве хлеба, в молоке при производстве кефира, кумыса. Молочная кислота необходима для дрожжей, а дрожжи обеспечивают молочно-кислых бактерий ростовыми веществами. Симбиотические взаимоотношения устанавливаются между клубеньковыми бактериями и бобовыми растениями. Используя готовые органические вещества растений, клубеньковые бактерии взамен снабжают их азотистыми веществами, синтезируемыми из азота воздуха.

Метабиоз - форма сожительства, близкая к симбиозу. При метабиотических взаимоотношениях один вид микроорганизмов в процессе жизнедеятельности создает благоприятные условия для другого. Так, многие сапрофиты в процессе питания способны превращать белки в пептоны, полипептиды и аминокислоты. Другие же микробы, неспособные использовать белки, хорошо усваивают эти вещества. Первые создают продукты питания для вторых, продукты жизнедеятельности вторых могут служить пищей для третьих и т. д.

Отношения метабиоза способствуют быстрой порче квашеных и соленых овощей, кисло-молочных продуктов, если они хранятся открытыми. Молочнокислые бактерии продуцируют молочную кислоту, ее потребляют плесневые грибы и подготавливают, таким образом, субстрат для гнилостных бактерий.

Дрожжи, продуцируя, спирт при развитии в средах, содержащих сахар, например во фруктовых соках, подготавливают условия для уксуснокислых бактерий, вслед за которыми этот субстрат могут использовать плесневые грибы, превращая уксусную кислоту в углекислый газ и воду. Метабиозом объясняется быстрая минерализация всех органических веществ, попадающих в почву. Принцип метабиоза лежит в основе всего круговорота веществ в природе.

Антагонизм - это такие взаимоотношения, при которых совместно обитающие виды микроорганизмов оказывают угнетающее действие друг на друга.

Высшие растения жили в симбиозе с грибами и бактериями в течение всей своей истории. Выход растений на сушу во многом был обусловлен симбиозом с грибами (микориза). Генетические системы, обеспечивающие взаимодействие растений с микоризными грибами, в дальнейшем многократно менялись в связи с вовлечением в симбиоз новых грибов и бактерий. Первичная функция корней состояла в обеспечении симбиоза с почвенными микроорганизмами, и лишь потом корни приобрели способность самостоятельно усваивать питательные вещества из почвы.

Статья Н.А.Проворова представляет собой большой аналитический обзор, содержащий так много важных фактов и идей, что его переложение в виде краткой популярной заметки представляется делом довольно неблагодарным. Однако это необходимо сделать, поскольку мы не можем публиковать полные тексты статей (напомним, что организация, именуемая «МАИК Наука – Интерпериодика», владеет монопольным правом на торговлю этими текстами).

Ранее на нашем сайте уже был опубликован пересказ статьи Н.А.Проворова и Е.А.Долгих (см.: От биохимического сотрудничества – к общему геному ; там же есть подборка ссылок по новейшим открытиям в области изучения симбиотических систем).

В своей новой статье Н.А.Проворов показывает, что, несмотря на огромное разнообразие растительно-микробных симбиозов, большинство из них, по-видимому, имеют единое эволюционное происхождение.

К концу XX века стало ясно, что внешне различные формы растительно-микробных симбиозов основаны на очень сходных генетических, клеточных и молекулярных механизмах. Их изучение привело большинство специалистов к выводу о том, что все наблюдаемое многообразие симбиозов растений с почвенными грибами и бактериями произошло от одной самой древней, первичной формы такого симбиоза – арбускулярной микоризы (АМ) . Грибы, участвующие в АМ, проникают внутрь растительных клеток, образуя там особые внутриклеточные струкутуры – арбускулы (см.: . «Элементы», 12.03.08).

1. Происхождение арбускулярной микоризы и происхождение наземных растений. Уже самые древние и примитивные наземные растения – псилофиты – жили в симбиозе с грибами и имели АМ (см.: W Remy, T N Taylor, H Hass, H Kerp. Four hundred-million-year-old vesicular arbuscular mycorrhizae // PNAS. 1994. V. 91. P. 11841-11843). У псилофитов еще не было настоящих корней. Их подземную часть представляли ризоиды, которые могли служить для закрепления растения в грунте, но не для питания. Поэтому для первых наземных растений симбиоз с грибами, по-видимому, был абсолютно необходим. АМ характерна и для большинства современных растений (а те, у которых ее нет, скорее всего, происходят от предков, имевших АМ).

На этом основании еще в 1970-х годах была предложена гипотеза о том, что выход растений на сушу состоялся именно благодаря симбиозу с АМ-грибами (Pirozinski, Malloch, 1975). Эта гипотеза впоследствии блестяще подтвердилась не только палеонтологическими данными, но и молекулярно-филогенетическими: анализ генов 18S рРНК показал, что АМ-грибы происходят от общего предка, жившего 400-500 млн лет назад, т.е. как раз в то время, когда на суше появились первые растения.

По-видимому, «уже на заре эволюции наземных растений у них сложилась способность регулировать жизнедеятельность микроорганизмов, колонизирующих подземные органы». Генные системы АМ довольно универсальны (это подверждается низкой специфичностью АМ-грибов по отношению к растениям), и в последствии они многократно перестраивались для организации различных симбиозов в различных группах растений.

Как растения, так и грибы, по-видимому, могли «подготовиться» к долгой совместной жизни задолго до выхода растений на сушу. Возможно, предки высших растений уже в водной среде вступали в симбиозы с различными водными грибами, как это делают сегодня зеленые и красные водоросли. Грибы, вышедшие на сушу намного раньше растений, могли вступать здесь в симбиоз с цианобактериями. Гриб Geosiphon, считающийся наиболее вероятным предком АМ-грибов, вступает в симбиоз с цианобактериями Nostoc, которые не только фотосинтезируют, но и фиксируют атмосферный азот. Это позволяет грибу жить на крайне бедных субстратах. Симбиозы такого типа могли быть широко распространены на суше до ее освоения растениями. Таким образом, еще до выхода растений на сушу почвенные грибы могли выработать эффективные системы для усвоения органики, производимой фотосинтезирующими симбионтами, а также для снабжения этих симбионтов фосфатами, поглощаемыми грибом из почвы.

В отличие от цианобактерий, растения могут снабжать симбиотические грибы гораздо большим количеством органики. Недостаток азота в симбиотической системе мог быть компенсирован симбиозом АМ-грибов с другими азотфиксирующими микробами.

4. Симбиоз с азотфиксирующими бактериями. Генетические системы, обеспечивающие возможность симбиоза растений с азотфиксирующими бактериями, по-видимому, являются результатом модификации генетических систем АМ (см.: Изменение гена, необходимого для симбиоза растений с грибами, привело к формированию симбиоза с азотфиксирующими бактериями . «Элементы», 12.03.08). Кроме того, Н. А. Проворов предполагает, что «в ходе эволюции АМ гломусовые грибы служили для растений донорами азотфиксирующих симбионтов». Гломусовые грибы, участвующие в АМ, часто вступают в симбиоз с азотфиксирующими бактериями. «Учитывая поистине планетарный масштаб происходящего при развитии АМ смешивания грибной и растительной цитоплазмы, логично предположить, что отбор мог подхватывать даже очень редко возникающие эндосимбионты грибов, способные сохранять жизнеспособность в цитоплазме растений».

В статье подробно разбираются возможные пути эволюции симбиоза растений с азотфиксирующими бактериями – ризобиями и актинобактериями. Отмечается, что большую роль в развитии этих сибмиозов сыграли преадаптации, развившиеся в ходе эволюции АМ, однако для налаживания взаимоотношений с новыми симбионтами были рекрутированы и многие гены и генные комплексы растений, которые ранее выполняли другие функции.

По-видимому, «приобретение двудольными способности к азотфиксирующим клубеньковым симбиозам было связано с последовательным замещением различных типов микроорганизмов, которые могут заселять межклеточные и субклеточные симбиотические компартменты в кортексе корня. При этом прокариотические азотфиксаторы использовали анцестральную программу размещения («хостинга») микросимбионтов, которая возникла при коэволюции древнейших наземных растений с АМ-грибами и претерпевала закономерные усложнения, происходившие параллельно в различных семействах».

Начальным этапом этого процесса, возможно, было замещение АМ-грибов азотфиксирующими актинобактериями Frankia. Эти бактерии внешне очень похожи на грибы (поэтому их раньше называли актиномицетами). Как и грибы, они образуют мицелий. Поначалу азотфиксирующая активность новых симбионтов была низкой, но потом растения выработали средства для ее интенсификации (в частности, более интенсивно стали откачиваться в надземную часть растения азотистые соединения, которые ингибируют азотфиксацию).

Симбиоз с Frankia создал предпосылки для вступления растений в симбиоз и с другими азотфиксаторами, которые могли вытеснять актинобактерий из программы развития симбиоза, в частности, благодаря своему более быстрому росту. Бактерии-конкуренты научились быстрее, чем Frankia, активировать у растений программу «хостинга», т.е. стимулировать растение к приему симбионтов. Проникновению Frankia в корень предшествует долгий (в несколько суток) период накопления актинобактерий у поверхности корней, тогда как ризобии проходят этот предварительный этап всего за несколько часов.

Однако замена «грибоподобных» актинобактерий другими бактериальными симбионтами (ризобиями) была сопряжена с опасностью, поскольку это открывало дорогу в организм растения множеству других бактерий, в том числе патогенных. Возможно, именно поэтому симбиоз с ризобиями сложился лишь у бобовых и некоторых вязовых (это могло быть связано с особенностями защитных систем этих растений).

Замещение микоризных грибов азотфиксаторами вовсе не означало отказ от микоризы. Напротив, у подавляющего большинства бобовых и «актиноризных» растений имееется также и АМ. При этом азотфиксирующие симбионты снабжают растение азотом, а грибы – фосфором. Однако растения, живущие в симбиозе с ризобиями, не образуют актиноризу, потому что нет смысла поддерживать два дублирующих друг друга азотфиксирующих симбиоза (на их поддержание растению приходится тратить много энергии).

Таким образом, развитие разнообразных растительно-грибных и растительно-бактериальных симбиозов представляет собой единый эволюционный континуум.

На вопрос Про симбиоз... заданный автором Пользователь удален лучший ответ это СИМБИОЗ, или мутуализм, форма отношений между организмами (симбионтами) двух разных видов, приносящая обоюдную пользу. Степень выраженности симбиоза может быть разной, напоминая в этом отношении паразитизм, проявления которого тоже значительно варьируют. Иногда симбиотические взаимоотношения столь важны для жизнедеятельности организмов, что гибель одного из них неизбежно ведет к гибели другого. Однако связь не всегда бывает такой жесткой, и организмы могут жить по отдельности, хотя растут и размножаются при этом далеко не так успешно, как при совместном существовании. В других случаях равновесие во взаимоотношениях между симбионтами оказывается довольно неустойчивым: когда условия благоприятствуют одному из них, он может существенно обогнать в росте своего партнера и даже превратиться по отношению к нему в хищника или паразита.
Явление симбиоза встречается в очень многих группах растений и животных. Замечательный пример демонстрируют бобовые растения и связанные с ними азотфиксирующие бактерии. Эти бактерии живут в специальных клубеньках, развивающихся на корнях бобовых под действием самих же бактерий; они получают от растения питательные вещества, а сами при этом связывают атмосферный азот, превращая его в такие химические соединения, которые могут использоваться растениями-симбионтами. Бактерии живут в симбиозе и со многими другими организмами. Так, у лошадей, крупного рогатого скота, овец и других жвачных, потребляющих богатые клетчаткой корма, в желудочно-кишечном тракте обитают бактерии, частично переваривающие эту грубую пищу. Взамен бактерии получают от хозяина все необходимое питание.
Другой пример симбиоза – лишайники. Они представляют собой очень тесный союз гриба и одноклеточных зеленых (редко – сине-зеленых) водорослей. Гриб обеспечивает водоросли прикрепление и защиту, а также снабжение водой и неорганическими солями. Водоросль же предоставляет грибу продукты фотосинтеза. При благоприятных обстоятельствах и гриб и водоросль, входящие в состав лишайника, могут жить по отдельности, но только находясь в симбиозе они способны произрастать в таких суровых условиях, в которых многие растения не выживают. Не случайно именно лишайники часто обитают на голых скалах, являясь в таких местах единственными поселенцами.
Одноклеточные зеленые, желто-зеленые и бурые водоросли нередко выступают в качестве симбионтов животных. Водоросль при этом снабжает животное продуктами фотосинтеза, получая, в свою очередь, и убежище, и ряд веществ, необходимых для жизнедеятельности. Зеленые водоросли бывают симбионтами пресноводных простейших, гидры и некоторых пресноводных губок. Бурые водоросли нередко встречаются как симбионты морских простейших (некоторых видов фораминифер и радиолярий) . Сходные водоросли живут в симбиозе с кораллами, актиниями и отдельными видами плоских червей.
Различные простейшие являются симбионтами животных, поедающих древесину; это типичные обитатели кишечника, например, термитов и лесных тараканов, где они выполняют ту же работу, что и перерабатывающие клетчатку бактерии – симбионты жвачных. Союз термитов и живущих в их кишечнике простейших является строго облигатным, т. е. эти организмы не могут существовать друг без друга.
Известный пример симбиоза – сожительство рака-отшельника и актинии. Актиния поселяется на раковине, в которой живет рак-отшельник, и своими снабженными стрекательными клетками щупальцами создает для него дополнительную защиту, а тот, в свою очередь, перетаскивает актинию с места на место, увеличивая тем самым территорию ее охоты; кроме того, актиния может потреблять в пищу и остатки от трапезы рака-отшельника.
Другой интересный случай симбиоза – взаимоотношения муравьев и тлей. Совершенно беззащитных тлей муравьи охраняют, пасут и «доят» , получая от них сладкие продукты выделения.

Фото симбиоза грибов с корнями

Ярким примером симбиоза грибов является микориза - содружество грибов и высших растений (различных деревьев). При таком «сотрудничестве» выигрывает и дерево, и гриб. Поселяясь на корнях дерева, гриб выполнят функцию всасывающих волосков корня, и помогает дереву усваивать питательные вещества из почвы. При таком симбиозе от дерева гриб получает готовые органические вещества (сахара), которые синтезируются в листьях растения при помощи хлорофилла.

Кроме того, при симбиозе грибов и растений грибница вырабатывает вещества типа антибиотиков, которые защищают дерево от различных болезнетворных бактерий и патогенных грибов, а также стимуляторы роста типа гиббереллина. Отмечено, что деревья, под которыми растут шляпочные грибы, практически, не болеют. Кроме того, дерево и гриб активно обмениваются витаминами (в основном, группы В и РР).

Многие шляпочные грибы образуют симбиоз с корнями различных видов растений. Причем установлено, что каждый вид дерева способен образовать микоризу не с одним видом гриба, а с десятками разных видов.

На фото Лишайник

Другим примером симбиоза низших грибов с организмами других видов являются лишайники, которые представляют собой союз грибов (в основном аскомицетов) с микроскопическими водорослями. В чем же проявляется симбиоз грибов и водорослей, и как происходит такое «сотрудничество»?

До середины XIX века считалось, что лишайники являются отдельными организмами, но в 1867 году русские ученые-ботаники А. С. Фаминцын и О. В. Баранецкий установили, что лишайники - не отдельные организмы, а содружество грибов и водорослей. От этого союза выигрывают оба симбионта. Водоросли с помощью хлорофилла синтезируют органические вещества (сахара), которыми питается и грибница, а грибница снабжает водоросли водой и минеральными веществами, которые она высасывает из субстрата, а также защищает их от высыхания.

Благодаря симбиозу гриба и водоросли лишайники живут в таких местах, где не могут отдельно существовать ни грибы, ни водоросли. Они заселяют знойные пустыни, высокогорные районы и суровые северные регионы.

Лишайники являются еще более загадочными созданиями природы, чем грибы. В них меняются все функции, которые присущи отдельно живущим грибам и водорослям. Все процессы жизнедеятельности в них протекают очень медленно, они медленно растут (от 0,0004 до нескольких мм в год), и так же медленно старятся. Эти необычные создания отличаются очень большой продолжительностью жизни - ученые предполагают, это возраст одного из лишайников в Антарктиде превышает 10 тысяч лет, а возраст самых обычных лишайников, которые встречаются везде, не менее 50-100 лет.

Лишайники благодаря содружеству грибов и водорослей намного выносливее мхов. Они могут жить на таких субстратах, на которых не могут существовать ни один другой организм нашей планеты. Их находят на камне, металле, костях, стекле и многих других субстратах.

Лишайники до сих пор продолжают удивлять ученых. В них обнаружены вещества, которых больше нет в природе и которые стали известны людям только благодаря лишайникам (некоторые органические кислоты и спирты, углеводы, антибиотики и др.). В состав лишайников, образованных симбиозом грибов и водорослей, также входят дубильные вещества, пектины, аминокислоты, ферменты, витамины и многие другие соединения. Они накапливают различные металлы. Из более 300 соединений, содержащихся в лишайниках, не менее 80 из них нигде больше в живом мире Земли не встречаются. Каждый год ученые находят в них все новые вещества, не встречающиеся больше ни в каких других живых организмах. В настоящее время уже известно более 20 тысяч видов лишайников, и ежегодно ученые открывают еще по несколько десятков новых видов этих организмов.

Из этого примера видно, что симбиоз не всегда является простым сожительством, а иногда рождает новые свойства, которых не было ни у одного из симбионтов в отдельности.

В природе таких симбиозов великое множество. При таком содружестве выигрывают оба симбионта.

Установлено, что стремление к объединению больше всего развито у грибов.

Вступают грибы в симбиоз и с насекомыми. Интересным содружеством является связь некоторых видов плесневых грибов с муравьями-листорезами. Эти муравьи специально разводят грибы в своих жилищах. В отдельных камерах муравейника эти насекомые создают целые плантации этих грибов. Они специально готовят почву на этой плантации: заносят кусочки листьев, измельчают их, «удобряют» своими испражнениями и испражнениями гусениц, которых они специально содержат в соседних камерах муравейника, и только потом вносят в этот субстрат мельчайшие гифы грибов. Установлено, что муравьи разводят только грибы определенных родов и видов, которые нигде в природе, кроме муравейников, не встречаются (в основном, грибы родов фузариум и гипомицес), причем, каждый вид муравьев разводит определенные виды грибов.

Муравьи не только создают грибную плантацию, но и активно ухаживают за ней: удобряют, подрезают и пропалывают. Они обрезают появившиеся плодовые тела, не давая им развиться. Кроме того, муравьи откусывают концы грибных гиф, в результате чего на концах откусанных гиф скапливаются белки, образуются наплывы, напоминающие плодовые тела, которыми муравьи затем питаются и кормят своих деток. Кроме того, при подрезании гиф мицелий грибов начинает быстрее расти.

«Прополка» заключается в следующем: если на плантации появляются грибы других видов, муравьи их сразу удаляют.

Интересно, что при создании нового муравейника будущая матка после брачного полета перелетает на новое место, начинает копать ходы для жилища будущей своей семьи и в одной из камер создает грибную плантацию. Гифы грибов она берет из старого муравейника перед полетом, помещая их в специальную подротовую сумку.

Подобные плантации разводят и термиты. Кроме муравьев и термитов, «грибоводством» занимаются жуки-короеды, насекомые-сверлильщики, некоторые виды мух и ос, и даже комары.

Немецкий ученый Фриц Шаудин обнаружил интересный симбиоз наших обычных комаров-кровососов с дрожжевыми грибками актиномицетами, которые помогают им в процессе сосания крови.

С тех незапамятных времен сложились сложные взаимоотношения между микроорганизмами, с высшими организмами растительного и животного царства, с одной стороны, и окружающей средой – с другой. Тесное сожительство двух различных организмов, в том числе микроорганизма с макроорганизмом, называют симбиозом . Участники симбиоза называются симбионтами. Симбиоз характеризуется различными типами биотических взаимоотношений по отношению к клеткам своего хозяина и друг к другу.

Мутуализм - это такая форма сожительства, когда оба симбионта - хозяин и микроорганизм получают взаимную выгоду. При мутуализме сожительство создает благоприятные условия для обоих партнеров, то есть это взаимовыгодный симбиоз. Некоторые виды бактерий, обитая в кишечнике, продуцируют витамины, которые используются в организме животных для биокаталитических оеакций. Бактерии многих видов продуцируют витамины В6, В12, а также витамин К. Примером мутуализма служит сожительство растений с клубеньковыми бактериями, которые питаются веществами из соков растения (например, бобовых - гороха, вики), а растения, в свою очередь, используют азотистые соединения, синтезированные клубеньковыми бактериями, которые являются фиксаторами азота.

Комменсализм - это такая форма сожительства, когда один из симбионтов (в данном случае микроб) живет за счет хозяина, пользуется его защитой, но не причиняет хозяину никакого вреда. При комменсализме партнерство может быть выгодно одному из организмов без оказания вредного воздействия на другого. Микробы-комменсалы (стафилококки, стрептококки) населяют в качестве нормальной микрофлоры кожные покровы и слизистые оболочки животных. Однако следует признать, что комменсализм в этом случае довольно относительное понятие, потому что среди представителей условно-патогенной микрофлоры имеются такие, которые при определенных условиях могут вызывать тяжелые заболевания.

Антагонизм - это противоположное действие, взаимное противодействие органов, лекарственных средств, микроорганизмов. Антагонизм микробов - это сложное взаимоотношение, когда при совместном развитии популяций бактерии одного вида или внутри одного и того же вида угнетают развитие других, а иногда полностью их уничтожают. Антагонизм микробов широко используют для профилактики и лечения различных болезней, главным образом желудочно-кишечных заболеваний. Например, многие штаммы кишечной палочки способны подавлять развитие и уничтожать стрептококки, стафилококки, сальмонеллы. Антагонистические взаимоотношения между микроорганизмами представляют большой практический интерес. Антагонизм микробов в почве наблюдал еще Л. Пастер (1870 г.), В.А. Манассеин, А.Г. Полотебнов (1871 г.), И.И. Мечников (1905 г.) наблюдал антагонизм между молочнокислыми и гнилостными бактериями. Заслуга И.И. Мечникова заключается в том, что он заложил основы учения об антагонизме микроорганизмов, которое в настоящее время переросло в учение об антибиотиках.

Синергизм - это одинаковые физиологические процессы различных микробных ассоциаций, в результате которых происходит увеличение конечных продуктов.

Сателлизм - это стимуляция роста одного микроорганизма продуктами жизнедеятельности другого, который затем становится его спутником.

Среди разнообразнейших представителей мира микроорганизмов развились различные формы симбиотических взаимоотношений. Взаимно полезные отношения сложились между аэробными бактериями, обитающими в почве, в отделе толстого кишечника и других субстратах. Аэробные бактерии используют кислород, присутствующий в почве, тем самым создают благоприятные условия для развития анаэробов. В свою очередь, анаэробы разлагают целлюлозу, образуя органические кислоты, которые являются источником энергии для аэробных бактерий. Такие взаимоотношения существуют между простейшими и водорослями, симбиоз азотобактера с бактериями, разлагающими целлюлозу, между многочисленными бактериями и дрожжами в кефирных зернах и др.



Взаимопомощь между организмами проявляется и при различных инфекционных болезнях животных и человека. Так, гемофильные бактерии проявляют свое патогенное действие в организме в сообществе с различными сапрофитами - стафилококками, кишечной палочкой. Это свойство используют в лабораторной практике для культивирования гемофильных бактерий с использованием “баккормилок”.

Из огромного числа микроорганизмов, обитающих в природе, только незначительная часть болезнетворна. В процессе многовековой эволюции одни виды микробов, приспособившись к извлечению пищевых ресурсов из неживой природы, до сего времени остаются свободноживущими, другие виды постепенно адаптировались к сожительству с животными или растениями и за счет их получают питательные вещества.

Различными могут быть и пространственные отношения между симбионтами. Если один симбионт находится вне клеток другого, то говорят об эктосимбиозе , а если внутри клеток - об эндосимбиозе. Более крупного из симбионтов называют хозяином.

При инфекционных заболеваниях взаимодействие различных видов микроорганизмов обусловливает развитие так называемых ассоциированных инфекций. Ассоциированные инфекции вызываются двумя или более возбудителями. Ассоциация микроорганизмов - это сообщество различных их видов, существующее в естественно или искусственно созданных условиях. Например, жизнь анаэробов совместно с аэробами в среде, содержащей свободный кислород. Ассоциация микроорганизмов имеет большое значение при вирусных и микоплазмотических инфекциях респираторных органов, в частности у крупного рогатого скота в условиях промышленных животноводческих комплексов.

Микрофлора почвы

Почва состоит из неорганических веществ и органических соединений, образующихся в результате гибели и разложения живых организмов. Почвенные живые организмы в совокупности составляют почвенный биоценоз . Содержащиеся в почве живые организмы (в том числе микроорганизмы) составляютживую фазу почвы . В нее входят макроорганизмы и микроорганизмы, как животного, так и растительного происхождения.

Макроорганизмы живой фазы почвы включают:

- макрофауну (грызуны, насекомые, клещи, брюхоногие моллюски, многоножки, пауки и кольчатые черви);

- макрофлору (корни растений).

Микроорганизмы живой фазы почвы включают:

-микрофауну (нематоды или струнцы, простейшие, коловратки);

- микрофлору (водоросли, грибы, актиномицеты бактерии).

Находящиеся в почве микроорганизмы подразделяются на два вида:

-аутохтонные микроорганизмы (резидентные микроорганизмы, резидентная микрофлора) , то есть микробы, которые присущи только конкретному типу почвы;

- аллохтонные микробы (транзиторная микрофлора) , то есть те микроорганизмы, которые в обычных условиях в почве не встречаются.

Микроорганизмы в почве развиваются в водных и коллоидных пленках, покрывающих твердые частицы, и особенно в капиллярной и гравитационной воде, заполняющей поры между минеральными частицами почвы и содержащей растворенные органические и неорганические вещества.

Микрофлора почвы:

1. Водоросли (зеленые, сине-зеленые и диатомовые). Они распространены повсеместно, особенно в поверхностных слоях почвы. Наиболее важным экологическим фактором, регулирующим распространение водорослей, является влажность, хотя они способны выдерживать длительные периоды засухи. Морфологическое разнообразие водорослей очень велико, но все они имеют микроскопические размеры, нитевидную форму и состоят из одной клетки. Наиболее многочисленные сине-зеленые и зеленые водоросли. Количество их в 1 г почвы может достигать 100 тыс.

2. Грибы. Их можно разделить на три группы: дрожжи и дрожжеподобные, плесени, включая нитевидные грибы, базидиомицеты. Дрожжи и дрожжеподобные грибы мало распространены в обычных почвах, и поэтому роль и значение их в жизни почвы невелики. Плесени и базидиомицеты более многочисленны в почвах, особенно базидиомицеты в лесных почвах, где они вызывают образование микоризы. Грибы могут жить в условиях частичного анаэробиоза, но аэробиоз стимулирует их развитие. Число грибов в поверхностном слое почвы от 8 тыс. до 1 млн. на 1 г, а биомасса - от 1000 до 1500 кг/га. Наиболее благоприятная реакция среды для грибов - кислая (рН 4,0).

3. Акциномицеты. Они образуют разветвленный мицелий и представляют собой одноклеточные организмы. Многие из них размножаются спорами, очень похожими на бактериальные клетки. Акциномицеты очень многочислены. Количество их в 1 г почвы может колебаться от 100 тыс. до 36 млн., а их биомасса может достигать 700кг/га. Акциномицеты хорошо развиваются в не слишком кислых и не слишком влажных почвах, богатых органическим веществом. Большинство их аэробы. Наиболее благоприятная рекция для акциномицетов - нейтральная или слабо щелочная (pH 7,0-7,5).

4. Бактерии (спорообразующие бактерии, спирохеты, микобактерии, псевдомонады, азотфиксирующие и нитрифицирующие бактерии, архебактерии). В окультуренных почвах бактерии превосходят все другие группы микроорганизмов, как по численности, так и по своему разнообразию. Число бактерий в 1 г почвы колеблется от 300 тыс. до 95 млн. и даже до 4 млрд. В плодородной почве общая биомасса бактерий достигает 500 кг/га и более.

Бактерии делятся на гетеротрофы и автотрофы. Гетеротрофы используют энергию и углерод, заключенные в сложных органических веществах. Аутотрофы используют энергию, выделяющуюся при окислении минеральных веществ, добывая углерод из углекислого газа, а азот - из минеральных соединений. Большая часть почвенных бактерий принадлежит к гетеротрофам, то есть требующим для своего существования готовое органическое вещество.

По отношению к кислороду почвенные микроорганизмы разделяются на аэробные (требуют для своего существования свободный кислород) и анаэробные (не требуют для своего существования свободного кислорода).

Наибольшее значение в почве имеют азотфиксирующие бактерии, способные усваивать молекулярный азот (Azotobacter, Nitrobacter, Mycobacterium и другие), и спорообразующие палочки родов Bacillus и Clostridium.

Почвенные микроорганизмы принимают участие в процессах почвообразования, самоочищения почвы, кругооборота в природе азота, углерода и других элементов. В почве имеются все условия для развития микробов: достаточное количество органических и минеральных веществ для их питания, подходящие влажность и реакция среды, защита от прямых солнечных лучей, кислород. Вследствие этого в почве повсюду обитают многочисленные виды микробов - бактерий, акциномицетов, грибов. Почва - живая система, кроме микробов в ней живут многочисленные виды беспозвоночных животных, растений. Однако где больше органических питательных веществ, там и обильнее развиваются микробы.

Микрооганизмы, которые живут и размножаются на наземных частях растений (листьях, стеблях), называют эпифитеыми микроорганизмами, эпифитами или микробами филлосрефы. Такие микроорганизмы изучают для того, чтобы знать ее видовой состав, те процессы, которые они могут вызвать при заготовке и хранении кормов. Поверхность растений для эпифитов является средой обитания. Их количество зависит от стадии развития растений, влажности, температуры и других факторов. При увлажнении численность микроорганизмов возрастает. Чем старше растение, тем больше на нем микробов.

Наибольшее скопление их отмечается в зоне корневой системы растений (ризосферы) . Околокорневая (ризосферная) зона растений особенно насыщена микробами, образующими зону интенсивного размножения и повышенной активности, специфичную для каждого вида растений. При этом происходит непрерывная борьба за источники питания и кислород. Микроорганизмы почвы, внедряясь в корневую систему или даже наземные ткани растений, питаются там органическими соединениями, синтезированными растением - хозяином. В свою очередь, растения получают от микробов-симбионтов ряд необходимых им веществ. Своеобразные отношения в почве складываются между растениями и грибами. Поверхность корневой системы колонизируют преимущественно псевдомонады и грибы. Грибы вступают в симбиотические отношения с растениями и образуют микоризу (грибокорень) ,стимулирующую ростобоих партнеров (название дано немецким исследователем Б. Франком). Наличие или отсутствие микоризы зависит от систематического положения растения-хозяина. Микоризы широко распространены среди разнообразных типов растений. Не имеют микоризы водные растения.

Типы микориз:

  1. Эндотрофный тип микоризы (у травянистых растений, деревьев, кустарников) - мицелий гриба распространяется между клетками паренхимы и внедряется в них. Клетки паренхимы растений при этом остаются жизнеспособными и переваривают внедрившийся в них мицелий (по типу фагоцитоза). Под влиянием содержимого клетки внутриклеточный мицелий образует клубки (пелотопы), а нередко древовидные разветвления (арбускулы) или вздутые окончания (спорангиолы и везикулы). Часть мицелиальных окончаний выходит в почву. Такие гифы называются эмиссионными. Корневые волоски у растений с эндотрофной микоризой сохранятюся.
  2. Экзотрофный тип микоризы (у хвойных растений и сережкоцветных покрытосеменных растений) - корень окутывается плотным грибным чехлом, от которого во все стороны распространяется густая сеть гиф. При этом грибные гифы проникают в корень на небольшую глубину, где переплетаются и образуют густую сеть (гарниговская сеть - по имени обнаружившего ее ученого Р.Гарнига). При этом типе микоризы плотный грибной чехол окутывает корни так, что корневые волоски исчезают, а вода и питательные вещества из почвы поглощаются мицелием гриба.
  3. Перитрофная микориза- грибы не вступают с растениями в тесную связь. Они поселяются в ризосфере, окутывая корень.
  4. Переходный тип микоризы совмещает в себе черты, свойственные эктотрофной и эндотрофной микоризам.

Грибы- микоризообразователи усиливают и улучшают развитие корневой и надземной частей растений.

Микоризу у одного и того же растения могут образовывать разные грибы. С другой стороны, один и тот же гриб способен давать микоризу с разными растениями.

Совершенно другие взаимоотношения возникают между микробами и скошенными растениями. Растительная масса служит хорошей питательной средой для микроорганизмов. После скашивания растений исчезают преграды, которые препятствуют проникновению микробов в их ткани. Проявляется деятельность находящихся в анабиотическом состоянии эпифитов, среди которых наибольшее число гнилостных, грибов, маслянокислых и др. При их развитии происходят потери больших количеств питательных веществ и порча корма. Он приобретает гнилостный, затхлый запах, изменяет окраску. Растения легко разрываются, их консистенция становится мажущейся. Такой корм плохо поедается животными и представляет опасность для их здоровья. На поверхности листьев можно встретить представителей разных физиологических групп:

Аммонификаторы

Молочнокислые бактерии

Маслянокислые бактерии

Эшерихии

Нитрификаторы

Денитрификаторы

на поверхности листьев растений содержится большое количество аммонификаторов.

До 80% общего количества эпифитов составляют клетки Erwiniaherbicola (Psedomonas herbicola). Эта неспорообразующая бактерия на МПА образует золотисто-желтые колонии. Этот микроорганизм всегда преобладает в почвах, содержащих свежее органическое вещество. Часто встречается и другой представитель этого рода - Pseudomonas fluorescens. Эта псевдомонада растет на плотных питательных средах в виде флюоресцирующих колоний.

Следующий представитель эпифитов - азотфиксирующие бактерии.

Бацилл и актиноцетов среди эпифитных микроорганизмов мало, чаще встречаются разные грибы (Penicillium, Fusarium, Mucor).

Примерное соотношение наиболее часто встречающихся на поверхности растений групп и видов микроорганизмов следующее:

- Psedomonas herbicola – 30-60%

- Pseudomonas fluorescens – до 40%

Группа Coli – Aerogenes – до 2%

Молочнокислые бактерии - до 5%

Спороносные бактерии - до 2%

Численность эпифитной микрофлоры растений может сильно меняться. Она колеблется от сотен до десятков миллионов КОЕ на 1 г растительной массы. Численность эпифитной микрофлоры значительно возрастает во влажную погоду. В настоящее время (с 1953 г.) эпифиты выращивают на растительных питательных средах: сенном отваре, капустной среде и др. В результате были выделены такие микроорганизмы, которые способны разлагать органические соединения, фиксировать небольшие количества азота и использовать сахара. При изучении эпифитной микрофлоры строгой специфичности к определенным растениям не выявлено.

Для жизни бактерий требуется более высокая влажность, чем для плесневых грибов. Поэтому при относительно одинаковых условиях корма чаще подвергаются плесневению, чем каким-нибудь другим изменениям. Такие корма бывают нередко причиной отравлений.

Микроорганизмы зоны корня.

На поверхность корней и наземных частей растений выделяются органические соединения, синтезированные растениями. Это явление называется экзосмосом. В зависимости от многих причин интенсивность экзосмоса может быть большей или меньшей. Количество выделяемых за период жизни растения соединений составляет до 10% их массы и более.

При корневом экзосмосе образуются различные органические кислоты - яблочная, янтарная, винная, лимонная, щавелевая и др. Обнаружены и сахара, представленные альдозами и кетозами, а также некоторые аминокислоты (аланин, лизин и др.). Состав продуктов экзосмоза отдельных растений в той или иной степени отличается.

В выделениях корней имеются органические соединения большой физиологической активности - витамины, ростовые вещества, иногда алкалоиды и тд. Многие из указанных соединений в некоторых количествах выделяются и наземными органами растений. В связи с этим на корнях и надземных органах растений размножается обильная сапрофитная микрофлора.

Обычно выделяют “корневые” микроорганизмы, поселяющиеся на самой поверхности корня, - микрофлора ризопланы. Выделяют также группу микробов, обитающих в слое почвы, прилегающем к корню, - микрофлора ризосферы. Количество микроорганизмов на поверхности корня (в ризоплане) и в ризосфере в сотни раз больше, чем в остальной массе почвы. В зоне молодого корня в основном размножаются неспорообразующие бактерии. Здесь же встречаются микроскопические грибы, дрожжи, водоросли и другие микроорганизмы.

Состав микрофлоры ризосферы меняется с возрастом растений. Например, бациллы, актиномицеты и целлюлозоразрушающие микроорганизмы, практически отсутствующие в ризосфере молодых растений, появляются при более позднем развитии последних. Очевидно, отмеченная группа микроорганизмов живет не за счет экзосмоса растений, а принимает активное участие в разложении отмирающих корней.

Микрофлора поверхности корня несколько отличается от микробного биоценоза ризосферы. Так, в ризоплане богаче представлен род псевдомонад, здесь слабо размножаются азотобактер, целлюлозоразлагающие и некоторые другие микроорганизмы, которыз много в ризосфере.

Зоне корня каждого вида растений свойственны строго специфичные группы микроорганизмов, практически не размножающиеся в ризосфере других растений. Это определяется составом корневых выделений и органических остатков, которые у отдельнах видов растений имеют некоторые особенности. Например, клубеньковые бактерии обильнее размножаются в ризосфере бобовых растений. Азотобактер лучше развивается в зоне корня одних растений, чем других. В зоне корня отдельных растений размножаются некоторые специфические грибы.

Значение сапрофитных микроорганизмов зоны корня в жизни растений:

Эпифиты - разрушители органических и минеральных соединений, подготавливающие минеральную пищу для растений

Способность эпифитов синтезировать витамины (в частности, тиамин) и ростовые вещества - гиббереллина и гетероауксина

В почве живут и развиваются разнообразные микроорганизмы: амебы, инфузории, грибы, водоросли, актиномицеты и бактерии. Из структурных частей почвы для микробиологии особый интерес представляет ее органическое вещество - гумус, состоящий из остатков животных и растительных организмов и обитающих в почве микробов.

Почва является естественной средой обитания микроорганизмов. В ней имеются все условия благоприятного их развития (достаточное количество влаги, органических и минеральных веществ). Из природных субстратов почва наиболее обильно населена микроорганизмами, которые составляют ее постоянную микрофлору. Санитарно-гигиеническая роль этой микрофлоры огромна. Почвенные микроорганизмы участвуют в минерализации органических отбросов, самоочищении почвы, в круговороте веществ в природе.

На формирование микробных почвенных биоценозов, на их качественный и количественный состав влияют следующие факторы:

- тип(вид) почвы и ее степень окультуренности (способ обработки).

Чем она выше, тем больше общая микробная обсемененность. Соответственно, исходный нормальный показатель ОМЧ (общего микробного числа) для разных почв различен. В песчаных почвах преобладает аэробные микроорганизмы, в глинистых - анаэробы. Насыщенность микробами различных почв варьирует - их значительно больше в почве, богатой органическими веществами и подвергающейся механической аэрации. Наибольшую микробную обсемененность почв регистрируют на полях с фекальным орошением, скалках, местах выпаса скота. Нередко в состав микробных ценозов подобных мест входят и бактерии, патогенные для человека и животных.

- физико-химические свойства почвы: структурированность, содержание органических веществ, аэрация, влажность, водопроницаемость, наличие свободного и связанного кислорода, температура. Большинство почвенных микроорганизмов способны размножаться при нейтральном рН, высокой относительной влажности, температуре от 25 до 45 о С. Термофильные микроорганизмы (например, бактерии родов Thermomonospora, Thermococcus) разиваются только грибы и актиномицеты. Даже а 1 г песков пустынь имеется до 100тыс. Жизнедеятельных микробов, а в почве полупустынь - 250 тыс. В песчаных почвах, лучше аэрируемых, развиваются аэробные микробы. Влагоемкие почвы, богатые водой, бедные кислородом, благоприятны для размножения анаэробов. Очень много микробов в почвах, богатых перегноем (гумусом).

- возраст, географическое расположение почвы. В направлении с юга на север содержание органических веществ в ней, в соответственно, и микроорганизмов уменьшается.

- климатические условия и сезонность. Весной в почве преобладают аэробные, летом - спорообразующие бактерии. К концу лета увеличивается число акциномицетов, усваивающих органические вещества, не утилизированные бактериями. Биологическая активность всех почвеныых микроорганизмов увеличивается осенью и заметно снижается в зимний период.

- глубина почвенного слоя. В толще почвы выделяют три основных горизонта А (0-10см), В (10-20 см) и С (20-30 см). На поверхности и в горизонте А микроорганизмов мало вследствие низкой влажности и микробицидного действия прямого солнечного света. В необработанной почве горизонта А их содержится наиболее велико на глубине 5-10 см (то есть в зоне, пограничной с горизонтом В). В обработанной почве микроорганизмов особенно много на границе горизонтов В и С. На глубине 1 м выделяют единичные микроорганизмы. Виды, выделяемые на глубине 4 м и более рассматривают не как почвенные, а как имеющие геологическое значение.

Количественный и видовой состав микроорганизмов в почве обусловлен содержанием в ней органических веществ, влаги, рН, температурой, климатическими условиями, способом обработки и т. д.

С увеличением количества органических веществ в почве, как правило, возрастает и количество микроорганизмов. Органические вещества являются питательной средой для большинства почвенных бактерий. Общий запас органических веществ почвы достигает 400 т на 1 га, из них большая часть находится в поверхностном слое (до 30 см) почвы. Главная составная часть органических веществ почвы - останки животных и растительных тканей. Живая масса микроорганизмов в 1 га почвы (удобренной) превышает 5-6 т. Наиболее богаты микроорганизмами черноземные, каштановые почвы, сероземы и специально обработанные почвы. Количество бактерий в 1 г таких почв иногда достигает нескольких десятков миллиардов. Бедны микрофлорой песчаные, горные и лишенные растительности почвы. Но даже в песках пустыни количество бактерий достигает 10-100 тыс. в 1 г.

Наиболее многочисленны микроорганизмы в верхнем 5-15- сантиметровом слое, меньше их на глубине 20-30 см и минимальное количество на глубине 30-40 см. Однако бактерии были найдены в почве даже на глубине 5 м. Почвы, богатые бактериями, биологически более активны. Между плодородием почвы и содержанием в ней микроорганизмов имеется определенная зависимость. Подсчеты показали, что на каждый гектар малоплодородной почвы приходится 2,5-3 т микробной массы, высокоплодородной - до 16 т. Число микроорганизмов в 1 г почвы может колебаться от 1-3·10 6 до 20-25·10 9 .

Максимальное количество микробов в почве содержится на глубине 10-20 см. Начиная с глубины в 1-2 м, количество их резко сокращается. Это объясняется тем, что по мере углубления в почву уменьшается содержание органических веществ, а также кислорода, необходимого для жизнедеятельности аэробных бактерий.

Численность микроорганизмов в почве увеличивается по направлению с севера на юг, причем весной количество их значительно возрастает, достигая максимума к началу лета, осени; зимой - резко уменьшается.

К типичным почвенным бактериям относятся Bacillus subtilis, Bacillus mycoides, Bacillus mesentericus, Bacillus megatherium, а также термофильные бактерии и другие микроорганизмы, составляющие иногда 80-90% всей микрофлоры почвы.

Кроме вышеперечисленных микроорганизмов в почве обитают актиномицеты, плесневые грибы, дрожжи, микроскопические водоросли, простейшие.

Количество микроорганизмов в почве достигает несколько миллиардов на 1 г. больше всего их в унавоженной и подвергнутой обработке (пахоте и аэрации) почве - до 4,8-5,2 млрд. в 1 г. Меньше микробов содержится в лесной почве на 1 га в среднем составляет около 1000 кг. Другие авторы указывают, что на 1 га почвы в среднем имеется до 2-5 т микробной массы и даже до 7 т на 1 га. Наибольшее количество их концентрируется в ризосфере, то есть в прикорневой части почвы.

На состав микрофлоры почвы влияет деятельность человека: в частности, регулярное перекапывание почвы отрицательно сказывается на сложившихся биоценозах, особенно легких почв (за счет гибели анаэробных бактерий). Существенный вред микробным сообществам наносят загрязнение почвы отходами, содержащими токсические продукты. На состав микрофлоры неблагоприятно влияет регулярное попадание в почву выделений человека и животных, способствующих избыточному размножению отдельных групп микроорганизмов.

Превращение органических остатков в почве происходит путем их разложения до углекислого газа и воды, а также путем синтеза более сложных органических соединений из более простых. Кроме того, в почве продукты разложения подвергаются частичному окислению, полимеризации, уплотнению, соединению друг с другом. В итоге образуются совершенно новые вещества, не содержащиеся ни в исходных органических остатках, ни в продуктах микробного синтеза. Совокупность процессов разложения и синтеза новых соединений в почве называется гумификацией.

В анаэробных условиях может развиваться процесс, близкий к процессу гумификации. Он приводит к образованию битумов и называется битумизацией.