Защита организма от проникновения ксенобиотиков. Что такое ксенобиотики и как они уничтожаются Механизмы защиты организма от ксенобиотиков

Ученые обнаружили, что в организме животных и человека имеется довольно много различных механизмов защиты от ксенобиотиков. Главные из них:

· Система барьеров, препятствующих проникновению ксенобиотиков во внутреннюю среду организма и защищающих особо важные органы;

· Особые транспортные механизмы для выведения ксенобиотиков из организма;

· Ферментные системы, которые превращают ксенобиотики в соединения менее токсичные и легче удаляемые из организма;

·Тканевые депо, где могут накапливаться некоторые ксенобиотики.

Ксенобиотик, попавший в кровь, как правило, транспортируется в наиболее важные органы - центральную нервную систему, железы внутренней секреции и т.д., в которых расположены - гистогематические барьеры. К сожалению, гистогематический барьер не всегда бывает непреодолимым для ксенобиотиков. Более того, некоторые из них могут повреждать клетки, образующие гистогематические барьеры, и те становятся легко проницаемыми.

Транспортные системы, выводящие ксенобиотики из крови, обнаружены во многих органах млекопитающих, в том числе и человека. Наиболее мощные находятся в клетках печени и почечных канальцев.

Липидная мембрана этих клеток не пропускает водорастворимые ксенобиотики, но в этой мембране имеется специальный белок-переносчик, который опознает подлежащее удалению вещество, образует с ним транспортный комплекс и проводит через липидный слой из внутренней среды. Затем другой переносчик выводит из клетки вещество во внешнюю среду. Иначе говоря, все антропогенные органические вещества, образующие во внутренней среде отрицательно заряженные ионы (основания), выводятся одной системой, а образующие, положительно заряженные ионы (кислоты) - другой. К 1983 году было описано более 200 соединений разного химического строения, которые способна опознавать и выводить система транспорта органических кислот в почке.

Но, к сожалению, и системы выведения ксенобиотиков не всесильны. Некоторые ксенобиотики могут разрушать транспортные системы например, таким действием обладают синтетические антибиотики пенициллинового ряда - цефалоридины, по этой причине они не применяются в медицине.

Следующий механизм защиты – ферментные системы , которые превращают ксенобиотики в менее ядовитые и легче поддающиеся выводу соединения. Для этого используются ферменты, катализирующие или разрыв какой-либо химической связи в молекулу ксенобиотика, или, наоборот, соединение ее с молекулами других веществ. Чаще всего в итоге получается органическая кислота, которая легко удаляется из организма.

Наиболее мощные ферментные системы находятся в клетках печени. В гепатоцитах могут обезвреживаться даже такие опасные вещества, как полициклические ароматические углеводороды, способные вызывать рак. Но иногда в результате работы этих ферментных систем образуются продукты, гораздо более ядовитые и опасные, чем исходный ксенобиотик.

Депо для ксенобиотиков. Некоторые из них избирательно накапливаются в определенных тканях и длительное время в них сохраняются; в этих случаях и говорят о депонировании ксенобиотика. Так, хлорированные углеводороды хорошо растворимы в жирах и поэтому избирательно накапливаются в жировой ткани животных и человека. Одно из таких соединений ДДТ, до сих пор обнаруживается в жировой ткани человека и животных, хотя его применение в большинстве стран мира запрещено лет 20 назад. Соединения тетрациклинного ряда сродни кальцию, и потому избирательно депонируются в растущей костной ткани и т.д.

Для сохранения гомеостаза биологические объекты в процессе эволюции выработали специальные системы и механизмы биохимической детоксикации. Механизмы защиты от воздействия ксенобиотиков у разных видов биологических объектов могут быть разными. Однако системы защиты организма одинаковы, и их классифицируют по назначению и механизмам действия.

По назначению выделяют:

Системы, служащие для ограничения токсического воздействия ксенобиотиков(барьеры, тканевые депо);

Системы, служащие для устранения токсического воздействия ксенобиотиков (транспортные и ферментные системы).

Механизмы действия систем защиты зависят от путей проникновения ксенобиотиков в организм.

Барьеры. В организме животных и человека имеется две системы барьерной защиты:

Барьеры, мешающие ксенобиотикам войти во внутреннюю среду организма;

Барьеры, защищающие особо важные органы (мозг, центральную нервную систему, железы внутренней секреции и др.).

Роль барьеров, защищающих внутреннюю среду организма, выполняют кожа и эпителий внутренней поверхности желудочно-кишечного тракта и дыхательных путей. Кожа животных и человека составляет более четверти массы тела (у среднестатистического человека до 20 кг). Кожный покров состоит из трех основных слоев: эпидермиса (верхнего слоя кожи), дермы (внутреннего слоя, или собственно кожи) и подкожной жировой клетчатки (рис. 9). Верхний слой кожи имеет сложную структуру и состоит из рогового, прозрачного, зернистого, шиповидного и зародышевого слоев. Функцию барьера выполняют глубинная часть рогового и прозрачного слоев. Основной структурный компонент барьеров – структурные белки. Роговое вещество образовано a-кератинами (от гр . keras рог), содержащими в молекуле остатки всех 20 природных аминокислот.

Прозрачный слой образован одно- и многослойными пластинами клеток. Каждая клетка окружена тончайшей жировой пленкой – липидной мембраной, непроницаемой для растворимых в воде веществ. Однако вещества, хорошо растворяющиеся в липидах, могут преодолевать такой барьер. Основной структурный компонент липидной мембраны – глицеролипидный.

Липиды (от гр . lipos жир) – жироподобные вещества, входящие в состав всех живых клеток. В соответствии с химическим строением различают три основные группы липидов:

Жирные кислоты и продукты их ферментативного окисления;

Глицеролипиды (содержат в молекуле остаток глицерина);

Липиды, не содержащие в молекуле остаток глицерина (кроме первых).

Способность кожных барьеров защищать внутреннюю среду организма от проникновения в него ксенобиотиков зависит от:

Природы ксенобиотиков (состава, химических свойств, реакционной способности, гидрофильности и т.п.) Гидрофильные вещества растворяются в водных растворах ткани, а жирорастворимые – в липидах. Кожные барьеры защищают внутреннюю среду организма от попадания в нее водорастворимых веществ, от воздействия водных растворов кислот, гидроксидов, солей. Однако органические растворители и вещества, растворяющиеся в них, проникают через эти барьеры. Особенно опасны вещества, обладающие дифильным характером.;

Размеров молекул (частиц) ксенобиотика определяют возможность их проникновения во внутреннюю среду организма через кожу и кожные протоки потовых и сальных желез. Основным путем при этом является впитывание через кожу. Большие молекулы (белковые) остаются на поверхности кожи, не проникая вглубь, а частицы с малыми размерами могут проникать внутрь.;

Возраста организма Проницаемость кожи для воды не меняется с возрастом.

В тех случаях, когда ксенобиотики проникают через роговой слой и липидные мембраны, эпителий внутренней поверхности желудочно-кишечного тракта и дыхательных путей и поступают в кроветок, функцию барьеров, защищающих особо важные органы, выполняют гистогематические барьеры (от гр. histos ткань + haima кровь), расположенные между тканью и кровью. Некоторые ксенобиотики могут повреждать клетки, образующие гистогематические барьеры. Сильнее всего гистогематические барьеры повреждают ионы переходных металлов, образующие органические комплексы с белками, аминокислотами (ионы кадмия, цинка, хрома, ртути).

Для поддержания жизнедеятельности организма происходит замена старых барьерных клеток на новые. Красные кровяные клетки полностью обновляются ежемесячно, роговое вещество удаляется с кожи ежедневно (до 6 г), а полностью кожный покров обновляется в течение месяца. Эпителий внутренней поверхности желудочно-кишечного тракта и дыхательных путей обновляется еженедельно.

Депо для ксенобиотиков. Некоторые ксенобиотики накапливаются в определенных тканях организма и могут длительное время там сохраняться. Тканевые депо, собирая ксенобиотик в одной ткани, защищают от него внутреннюю среду организма и способствуют сохранению гомеостаза. Однако если ксенобиотик задерживается в депо надолго и его концентрация значительно возрастает с течением времени, то его отравляющее действие из хронического перейдет в острое.

Способность ксенобиотиков накапливаться в определенных тканях или органах определяется их составом, строением и физико-химическими свойствами.

Неэлектролиты, метаболически относительно инертные и обладающие хорошей липоидорастворимостью, накапливаются во всех органах и тканях. При этом в первой фазе поступления яда в организм определяющим будет кровоснабжение органа, которое лимитирует достижение динамического равновесия кровь ткань. Однако в дальнейшем основным фактором, влияющим на распределение яда, является сорбционная емкость органа (статическое равновесие). Для липоидорастворимых веществ наибольшей емкостью обладает жировая ткань и органы, богатые липидами (костный мозг и др.). Для многих липоидорастворимых веществ жировая ткань является основным депо, удерживающим яд как в больших количествах, так и в течение более длительного времени, чем другие ткани и органы. При этом длительность сохранения ядов в жировом депо определяется их физико-химическими свойствами. Например, десатурация жировой ткани после отравления животных бензолом происходит в течение 30-48 ч, а инсектицидом ДДТ – в течение многих месяцев.

Для распределения ионов металлов в организме, в отличие от органических неэлектролитов, не выявлено общих закономерностей, связывающих физико-химические свойства последних с их распределением. Однако в общем ионы металлов имеют тенденцию накапливаться больше всего в тех же тканях и органах, где они обнаруживаются в больших количествах в норме как микроэлементы. Кроме того, избирательное депонирование ионов металлов обнаруживается в тканях, где имеются полярные группы, способные отдавать электроны и образовывать координационные связи с атомами металлов, и в органах с интенсивным обменом веществ. Например, щитовидная железа поглощает марганец, кобальт, никель, хром, мышьяк, рений; надпочечники и поджелудочная железа – марганец, кобальт, хром, цинк, никель; гипофиз – марганец, свинец, молибден; семенники поглощают кадмий и цинк.

Депонирование ионов большинства переходных металлов в организме обусловлено преимущественно их способностью образовывать различные органические комплексы с белками и аминокислотами. Ионы таких металлов, как цинк, кадмий, кобальт, никель, таллий, медь, олово, рутений, хром, ртуть, распределяются в организме равномерно. Они обнаруживаются при интоксикации во всех тканях. При этом наблюдается некоторая избирательность их накопления. Избирательное депонирование в любой форме ртути и кадмия происходит в почках, что связывают со специфическим сродством этих металлов к SH-группе ткани почек. В форме грубодисперсных коллоидов некоторые малорастворимые редкоземельные металлы избирательно задерживаются в таких органах, как печень, селезенка, костный мозг, богатых ретикулоэндотелиальными клетками. В костной ткани избирательно накапливаются ионы тех металлов, неорганические соединения которых хорошо диссоциируют в организме, а также ионы металлов, образующих прочные связи с фосфором и кальцием. К таким металлам относятся свинец, бериллий, барий, стронций, галлий, иттрий, цирконий, уран, торий. Кроме того, свинец при длительном его вдыхании в максимальных количествах обнаруживается также в печени, почках, селезенке и сердечной мышце.

Выделение ионов металлов из организма подчиняется экспоненциальному закону. После прекращения поступления содержание их в организме быстро нормализуется. Во многих случаях выделение протекает неравномерно, многофазно, причем каждая фаза имеет свою экспоненциальную кривую. Например, большая часть вдыхаемых паров ртути удаляется из организма почками в течение нескольких часов, но удаление ее остаточных количеств затягивается на несколько дней; выделение остаточных количеств урана затягивается до 900 ч, а выделение цинка длится более 150 суток.

Транспортные системы. По своему назначению в организме животных и человека транспортные системы подразделяются на две группы. К первой группе относятся транспортные системы, очищающие внутреннюю среду всего организма. Вторую группу составляют транспортные системы, выводящие ксенобиотик из наиболее важного одного органа.

Транспортные системы первой группы находятся во многих органах, но наиболее мощные из них – в клетках печени и почечных канальцев.

Пища и другие вещества в желудке перевариваются лишь частично. В основном пищеварительный процесс протекает в тонком кишечнике. Переваренная пища и небольшие молекулы и ионы ксенобиотиков переходят через стенки тонкого кишечника в кровь и с кроветоком поступают в печень. Непереваренная пища и молекулы или ионы ксенобиотиков, не прошедшие через стенки тонкого кишечника, выводятся из организма.

В клетках печени структурный белок-переносчик идентифицирует вредные вещества и отделяет их от полезных. Полезные для организма вещества (глюкоза, запасаемая в виде гликогена, и другие углеводы, аминокислоты и жирные кислоты) выбрасываются в кровь для переноса к тем клеткам, жизнедеятельность которых они обеспечивают. Небольшая часть молекул глюкозы и аминокислот возвращается в печень для превращения их в необходимые крови белки.

Балластные вещества и некоторые ксенобиотики переносятся желчью в кишку и выводятся из организма. Другие ксенобиотики претерпевают в печени химические превращения, делающие их менее токсичными и более растворимыми в воде, легко выводимыми из организма.

В процессе выведения из организма ксенобиотиков и продуктов их превращения определенную роль выполняют легкие, органы пищеварения, кожа, различные железы. Наибольшее значение при этом имеют почки. Определяющую в процессах выведения функцию почек используют при отравлениях усилением мочеотделения для быстрейшего удаления из организма токсичных веществ. Однако многие ксенобиотики (ртуть и др.) оказывают при этом повреждающее воздействие на почки. Кроме того, в почках могут задерживаться продукты превращения ксенобиотиков. Например, при отравлениях этиленгликолем в процессе его окисления в организме образуется щавелевая кислота и в почечных канальцах выпадают кристаллы оксалата кальция, препятствующие мочеотделению.

Транспортные системы второй группы имеются, например, в желудочках головного мозга. Они выводят ксенобиотики из ликвора (жидкости, омывающей мозг) в кровь.

Механизм вывода ксенобиотиков транспортными системами обеих групп одинаков. Транспортные клетки образуют слой, одна сторона которого граничит с внутренней средой, а другая – с внешней. Липидная мембрана клеток этого слоя не пропускает водорастворимые ксенобиотики во внутреннюю среду клетки. Но в этой мембране имеется специальный транспортный белок – белок-переносчик , который идентифицирует вредное вещество, образует с ним транспортный комплекс и проводит его через липидный слой из внутренней среды во внешнюю.

Основная масса ксенобиотиков выводится двумя транспортными системами – для органических кислот и для органических оснований.

Число молекул белка-переносчика в мембране ограничено. При высокой концентрации ксенобиотиков в крови все молекулы белка-переносчика в мембране могут быть заняты, и тогда процесс переноса становится невозможным. Кроме того, некоторые ксенобиотики повреждают или даже убивают транспортные клетки.

Транспорт ионов металлов осуществляется преимущественно кровью в связанном с белковыми фракциями крови виде. В транспорте многих ионов металлов (например, свинца, хрома, мышьяка) большая роль принадлежит эритроцитам.

Ферментные системы. В процессах детоксикации попавших в кроветок ксенобиотиков определяющую роль выполняют ферментные системы, превращающие токсичные ксенобиотики в менее токсичные, более растворимые в воде и легче выводимые из организма соединения. Такие химические превращения протекают под воздействием ферментов, катализирующих разрыв какой-либо химической связи в молекуле ксенобиотика или, наоборот, взаимодействие молекул ксенобиотика с молекулами других веществ.

Наиболее мощные ферментные системы находятся в клетках печени. В большинстве случаев ферментные системы печени обезвреживают ксенобиотики, попавшие в кровь, оттекающую от кишечника и поступающую в печень, и предотвращают их поступление в общий кроветок. Типичным примером процесса детоксикации ксенобиотиков ферментными системами печени является биохимическое превращение в организме малорастворимого в воде бензола в хорошо растворимый в воде и легковыводимый из организма пирокатехин.

Биохимическое превращение в организме бензола протекает по трем направлениям: окисление (гидроксилирование) бензола в ароматические спирты, образование конъюгатов и полное разрушение его молекулы (разрыв ароматического кольца).

Другим примером процесса детоксикации ксенобиотиков ферментными системами печени является окисление токсичного сульфита в сульфат:

2SO 3 2– (водн) + O 2 (водн) 2SO 4 2– (водн)

Фермент, катализирующий эту реакцию, содержит ион молибдена. Без этого микроэлемента в клетках печени большая часть пищи была бы для организма человека и животных токсичной.

Возможности ферментных систем печени обезвреживать содержащиеся в кроветоке ксенобиотики ограничены. Поскольку процессы детоксикации связаны с расходованием важнейших для жизнедеятельности клеток веществ, то эти процессы могут вызвать их дефицит в организме. Вследствие этого появляется опасность развития вторичных болезненных состояний из-за дефицита необходимых метаболитов. Например, детоксикация многих ксенобиотиков зависит от запасов в печени гликогена, поскольку из него образуется глюкуроновая кислота. При поступлении в организм больших доз ксенобиотиков, обезвреживание которых осуществляется посредством образования глюкуроновой кислоты (например, бензольных производных), снижается содержание гликогена (основного легкомобилизуемого резерва углеводов). Однако есть вещества, которые под воздействием ферментов печени способны отщеплять молекулы глюкуроновой кислоты и тем самым способствовать обезвреживанию ядов. Одним из таких веществ является глицирризин, входящий в состав солодкового корня.

Кроме того, при попадании в кроветок ксенобиотиков в больших дозах функции печени могут подавляться. Перегрузка печени ксенобиотиками может привести также к их накоплению в жировых тканях организма и хроническому отравлению.

8085 0

Ксенобиотики загрязняют все среды природы — воздух, водоемы, почву и растительный мир. Промышленные отходы и другие загрязнители природной среды имеют способность быстро распространяться в воздухе и воде, включаясь в круговорот природы. Эти токсические соединения накапливаются в водоемах и почве, иногда в местах, значительно удаленных от источников заражения, чему способствуют ветер, дождь, снег, а также миграция загрязнителей водным путем (моря, реки, озера). Из почвы они попадают в растения и организм животных.

Центральное место в круговороте ксенобиотиков, происходящем в биосфере, занимает почва. Она находится в постоянном взаимодействии с другими экологическими системами, такими как атмосфера, гидросфера, растительный мир, и является важным звеном поступления различных компонентов, в том числе и ядовитых, в организм человека. Происходит это прежде всего через пищу. Все живые существа нуждаются в пище как в источнике энергии, строительных материалов и питательных веществ, обеспечивающих жизнедеятельность организма. Однако, если в ней содержаться не только полезные, по и вредные вещества, она становится опасной. Ксенобиотики являются причиной болезней и гибели растений и животных. Особую опасность приобретают ксенобиотики, стойкие к окружающей среде и способные в ней накапливаться.

Распространенность ксенобиотиков в окружающей среде зависит от климатических и метеорологических условий и характера водоемов. Так, повышенная влажность воздуха, направление ветра, осадки (дождь, снег) способствуют распространенности и выпадению ксенобиотиков. Пресные водоемы, моря и океаны отличаются по степени аккумуляции ксенобиотиков. Вид почвы, различные растения и их составные части различаются также по степени поглощения и удержания ксенобиотиков. Да и разные животные обладают различной чувствительностью к ксенобиотикам. Степень накопления ксенобиотиков в организме животных обусловлена стойкостью этих чужеродных веществ.

Так, канадские исследователи показали, что в воде озера Мичиган содержалось только 0,001 мг пестицида ДДТ в 1 л, в составе же мяса креветок содержалось уже 0,4 мг/л, в жире рыб — 3,5 мг/л, а в жире чаек, которые питались рыбой из этого озера, — 100 мг/л. Следовательно, в каждом последующем звене пищевой цепи происходит постепенное увеличение концентрации стойкого пестицида ДДТ, причем самое низкое содержание этого вещества отмечалось в воде озера. Поэтому неудивительно, что хлорорганические пестициды встречаются не только в жире морских рыб и сельскохозяйственных животных, но даже и у пингвинов, обитающих в Антарктиде.

Человек всегда должен помнить, что его деятельность в одной точке планеты может вызвать неожиданные последствия в другой ее точке. Например, буревестник вроде бы живет на необитаемых скалах в Атлантическом океане и питается исключительно рыбой. Однако он становится исчезающим видом из-за используемого на суше ДДТ, который накапливается в морских пищевых цепочках. Другим примером могут быть полярные льды, которые содержат значительное остаточное количество ДДТ, принесенного атмосферными осадками.

Свойства ксенобиотиков, поступающих из внешней среды в организм человека:

  • способность ксенобиотиков распространяться в окружающей нас среде далеко за пределы своего первоначального местонахождения (реки, ветры, дождь, снег и др.);
  • загрязнения окружающей среды весьма устойчивы;
  • несмотря на широкое различие в химической структуре, ксенобиотики обладают определенными общими физическими свойствами, которые увеличивают их потенциальную опасность для человека;
  • особенно опасны для здоровья человека сочетания различных ксенобиотиков;
  • ксенобиотикам свойственна малая интенсивность обмена и удаления, в результате чего они накапливаются в тканях растений и животных;
  • токсичность ксенобиотиков для высших млекопитающих обычно выше, чем для видов животных более низкого филогенетического порядка;
  • способность ксенобиотиков накапливаться в пищевых продуктах;
  • ксенобиотики снижают питательную ценность продуктов.
Всем ясно, что живые организмы нуждаются в пище. Добывание пищи, как растительного, так и животного происхождения, характеризуется как питание. Среди многочисленных условий внешней среды, постоянно воздействующих на организм человека и животных, фактору питания принадлежит наибольший удельный вес. Пища имеет одно принципиальное отличие от всех факторов внешней среды, так как элементы пищевых продуктов трансформируются в энергию физиологических функций и структурные компоненты человеческого тела. Академик И.П. Павлов писал: «Существеннейшей связью живого организма с окружающей средой является связь через известные химические вещества, которые должны поступать в состав данного организма, т. е. связь через пищу».

В ходе эволюции на Земле взаимоотношения сложились так, что одни организмы служили пищей для других и таким образом установились стабильные пищевые цепи. В результате человек стал главным конечным звеном многочисленных пищевых путей и может включаться в эти цепи питания практически на любом уровне. И это неудивительно, так как жизнь со своего возникновения сформировалась как цепной процесс. Процветание любого организма во многом определяется его положением в пищевой цепи, причем это обеспечивается эффективностью взаимодействий не только с предшествующими, но и последующими членами пищевой цепи. Другими словами, существенную роль играет не только источник питания и его эффективное поглощение, но и поедаемость данного члена экологической системы другим.

Пути миграции, т.е. пищевые пути, по которым движутся питательные вещества, многообразны, в том числе короткие и длинные. Пример длинной пищевой цепи: водоемы — почва — растения — животные — продукты питания — человек. Пример короткой пищевой цепи: водоемы — гидробионты — рыба — человек.

Образовавшиеся в природе органические вещества мигрируют по пищевым цепям в различных экологических системах (атмосферный воздух, водоемы, почва) и поступают в организм человека в виде продуктов питания растительного и животного происхождения. Однако в пище есть не только наши друзья, но и враги, так как одновременно по пищевым цепям движутся и многочисленные непищевые, чужеродные вещества, порожденные химизацией промышленности и сельского хозяйства и являющиеся токсичными для человека и других живых существ. Поэтому не случайно многие ученые говорят о ядах в нашей пище. В последнее время многие ученые также говорят об охране внутренней среды организма человека.

Академик Покровский говорит: «Mы глубоко убеждены, что важным интегральным критерием мер защиты пищи, направленных на предупреждение болезней, должны быть показатели химической чистоты внутренней среды организма человека, со свободы от чужеродных, особенно стойких веществ. Следует признать, что накопление во внутренних средах организма всякого стойкого постороннего вещества крайне нежелательно, а в ряде случаев опасно». Эта концепция предусматривает совершенно очевидные меры, направленные на снижение уровней загрязнений токсическими веществами всех, включая и пищу, объектов внешней среды. Таким образом, чистота окружающей среды является необходимой предпосылкой чистоты внутренней среды организма человека.

Ксенобиотики оказывают негативное влияние на питательные вещества (белки, углеводы, жиры, витамины, минеральные соли), тем самым снижают питательную ценность пищевых продуктов.

Следует иметь в виду, что загрязнение ксенобиотиками пищевых продуктов возможно не только при их получении, но и в процессе хранения, переработки, транспортировки и реализации населению. Загрязнения внешней среды довольно стабильны с тенденцией к распространению, аккумуляции в пищевых цепях, способны подвергаться биотрансформации с увеличением токсичности. Тяжесть вызываемых последствий изменяется в широких пределах в зависимости от степени и длительности воздействия ксенобиотиков. Ряд ксенобиотиков способен аккумулироваться в организме человека и, следовательно, оказывать длительное пагубное влияние.

Негативный эффект действия ксенобиотиков на организм человека зависит от их физико-химических свойств, концентрации, продолжительности воздействия, способности депонироваться в организме и избирательно влиять на те или иные ткани и органы. Следовательно, многие ксенобиотики вызывают специфические поражения различных органов. Неблагоприятные экологические факторы провоцируют или вызывают у большой части населения состояние стресса с последующими нарушениями обмена веществ. Несомненна также ведущая роль ксенобиотиков и в развитии аллергических состояний.

В результате накопления в организме человека ксенобиотиков нарушаются функции внутренних органов и развиваются различные болезненные состояния, вплоть до тяжелых болезней со смертельным исходом или инвалидизацией. Среди этих болезней, которые могут носить острый или хронический характер, особое опасение вызывает возможность развития злокачественных опухолей и лейкозов — рака крови. Самос дьявольское кроется как раз в коварстве пищевых цепей, в частности в микроскопичности пищи при постоянном поступлении ксенобиотиков. В результате развиваются тяжелые отдаленные последствия, в частности уродливое нежизнеспособное потомство.

Уже отмечалась роль почвы как центрального места в круговороте веществ. Это та среда, где взаимодействует большая часть элементов биосферы: воды и воздуха, климатические и физико-химические факторы и, наконец, живые организмы, участвующие в формировании почвы. Именно ей принадлежит ведущая роль в создании пищевых цепей.

Таким образом, пищевые пути — это главные пути миграции вредных для человека веществ, т.е. ксенобиотики поступают в организм в основном с пищей (70% из всех регулярно поступающих в организм только 20% — с воздухом и 10% — с водой).

Все пищевые продукты в качестве первоначальных источников содержат компоненты, поступающие из воздуха, воды и почвы. В зависимости от характера пищевого продукта путь превращения этих исходных веществ может быть более или менее длительным, прямым или извилистым, и поскольку загрязнение внешней среды связано с устойчивой тенденцией к распространению и накоплению ксенобиотиков в пищевых цепях (путях), а также способностью подвергаться трансформации с увеличением токсичности, тяжесть вызываемых ими последствий зависит от степени их токсичности (или стойкости) и длительности воздействия. Коварство проникновения ксенобиотиков в пищевые цепи состоит в том, что человек питается постоянно, а значит, даже в небольшом количестве вредные вещества постоянно поступают в его организм. Как уже отмечалось, пути миграции, т.е. пищевые пути (цепи) питательных веществ, полезных и вредных для человека, многообразны.

Источники загрязнения внешней среды ксенобиотиками

Источники загрязнения

Ксенобиотик

Наиболее загрязненный продукт

Продукты электротехнической промышленности

Полихлордифенолы

Рыба, женское молоко

Примеси в полихлордифенолах

Диоксины

Рыба, коровье молоко, говяжий жир

Фунтициды, побочные продукты промышленности

Гексахлорбензол

Животные жиры,

молочные

продукты

Производство пестицидов

Рыба, женское молоко

Пестициды

Галогенизированные углеводороды

Рыба, женское молоко

Производство хлора и едкого натрия, средств обработки связи

Алкильные соединения ртути

Автомобильные выхлопные газы, продукты сгорания угля

Зерновые, овощи, рыба, кислые продукты

Осадки в канализации, продукты металлургических процессов (плавка)

Зерновые, овощи, мясные продукты

Продукты

металлургических

процессов

Молоко, овощи, фрукты

Консервная промышленность

Консервирован­ные продукты


Располагает ли организм человека способностью в какой-то степени нейтрализовать вредное действие ксенобиотиков?
Ответ может быть положительным, так как организм человека обладает определенными механизмами защиты, позволяющими обезвредить болезнетворное воздействие ксенобиотиков.

К числу этих механизмов следует отнести:

  • совокупность процессов, с помощью которых эти чужеродные вещества выводится из организма по естественным путям выведения (выдыхаемый воздух, желчь, кишечник, почки);
  • активное обезвреживание ксенобиотиков в печени;
  • трансформация чужеродных веществ в менее активные химические соединения;
  • защитная роль иммунной системы организма.
Наконец, к числу важных защитных механизмов относятся различные ферментные системы. Некоторые из этих ферментов нейтрализуют действие чужеродных веществ, другие их разрушают, третьи как бы подготавливают эти вещества к удалению из организма. Особое значение приобретают большие возможности приспособления ферментных систем к качественно различному питанию. Конечно, эффективность защиты от агрессии ксенобиотиков во многом обусловлена полноценной деятельностью различных органов и систем. Поэтому становится понятной высокая чувствительность к действию ксенобиотиков организма детей (несозревшие механизмы защиты) или лиц с хроническими заболеваниями (истощение механизмов защиты).

Лисовский В.А., Евсеев С.П., Голофеевский В.Ю., Мироненко А.Н.

Наименование параметра Значение
Тема статьи: Защита организма от проникновения ксенобиотиков
Рубрика (тематическая категория) Производство

Ксенобиотики – общее название всœех чужеродных для организма веществ неживой природы. Система защиты, имеет 3 базовых уровня:

1) барьерный – кожные покровы, особенности строения верхних дыхательных путей, избирательная проницаемость клеток эпителия, выстилающих внутреннюю поверхность путей организма;

2) ферментный – ферменты клеток различных тканей, ферменты пищеварительного тракта могут трансформировать проникшие в организм ксенобиотики в соединœения типа органических оснований или органических кислот;

3) Транспортный – представлен специальными клетками различных тканей, имеющими в своей структуре белок переносчик. Он способен связываться с органическими основаниями или кислотами и переносить их внутрь клетки или из неё. По конвееру таких клеток трансформируемые ферментами ксенобиотики выносятся в кровь и присоединяются к эритроцитам. Эритроциты несут их в печень и там от них освобождаются.

Система защиты сформировалась в ходе биологической эволюции животных и человека за миллионы лет и высоко эффективна по отношению к природным ксенобиотикам. Развитие производства привело к накоплению и появлению в среде новых химических веществ, которые преодолевают барьеры организма. Многие, благодаря своим химическим свойствам, разрушают их, создавая условия для проникновения природных ксенобиотиков и открывая новые ворота для инфекций, что повышает возможности развития инфекций и аллергических заболеваний. Ферментная система организма ограничена наследственной информацией и в связи с этим в ее состав не входят ферменты, способные трансформировать большинство производственных ксенобиотиков. Транспортная система изначально способна к выведению из организма только определœенных групп химических соединœений и тесно связана с эффективностью ферментной системы. По этой причине многие современные ксенобиотики проникают во внутреннюю среду организма, не выводятся из него и накапливаются в определœенных тканях, называемых депо (чаще всœего жировая ткань). Проникновение ксенобиотиков в организм может привести к острому или хроническому отравлению, спровоцировать концерогенез, аллергию, повышать частоту мутаций.

12.7 Система контроля индивидуальности и целостности организма (Иммунная система)

Как известно, наследственная информация организма сводится к иформации о структуре его белков, т. е. всœе белки организма синтезируются на базе его индивидуальной информации. Система контроля индивидуальности и целостности организма принято называть иммунной системой. Реакции иммунной системы, направленные на распознавание, нейтрализацию и выведение из организма чужеродных белковых соединœений, называются иммунитетом. Способность вызывать иммунные реакции при проникновении в организм принято называть иммуногенность. Иммуногенностью обладают только белки, их соединœения и крупные углеводы. При этом при попадании в организм химического комплекса не иммуногенного вещества, к примеру лекарственного препарата с белком, иммунная реакция тоже будет развиваться, причем продукты этой реакции будут взаимодействовать и со всœем комплексом, и только с белком, и только с не иммунногенным веществом, входящим в комплекс. Т. е., в случае если в силу случайных обстоятельств или неправильного применения лекарств образуется его комплекс с собственным или любым другим белком, то через неĸᴏᴛᴏᴩᴏᴇ время продукты иммунных реакций организма будут вырабатываться и при поступлении только лекарства. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, развивается иммунная (аллергическая) реакция на любые не иммуногенные вещества. Белковые соединœения, вызывающие при проникновении в организм иммунные реакции и способные взаимодействовать с продуктами этих реакций, называются антигенами.

Иммунные реакции делят на 2 группы:

Неспецифические - это такие реакции, продукты которых постоянно вырабатываются в организме, постоянно присутствуют в нем и способны нейтрализовать большие группы возможных антигенов. В первую очередь к ним относят фагоциты - клетки иммунной системы, циркулирующие в крови или присутствующие в разных органах, способные поглощать частицы антигенов, переваривать их, расщепляя на безвредные вещества, выводимые из организма. К неспецифическим продуктам иммунной системы относится комплемент . Комплемент - это система ферментов в сыворотке крови, которая расщепляет чужеродные растворимые антигены. Возможности и фагоцитоза, и комплемента ограничены, т.к. они нейтрализуют только антигены, обладающие определœенными общими свойствами. К примеру, наличие в химической структуре определœенной химической группы. Антигены, не имеющие этих общих свойств, продуктами неспецифических реакций нейтрализоваться не будут.

Специфические иммунные реакции - это такие реакции, продукты которых вырабатываются только в ответ на проникновение антигена и могут взаимодействовать только с этим антигеном. Основным продуктом специфических иммунных реакций являются антитела (At) или иммуноглоблины (Ig). Иммуноглобулины - ϶ᴛᴏ белки сыворотки крови, вырабатываемые клетками иммунной системы в ответ на проникновение антигена, в молекуле которых есть участок, способный взаимодействовать только с этим антигеном. При взаимодействии иммуноглобулина с антигеном образуется комплекс – ʼʼантиген-антителоʼʼ, который может:

а) прикрепляться к эритроцитам и вместе с ними, поступая в печень, затем выводиться из организма;

б) разрушаться фагоцитами или комплементом вне зависимости от исходных свойств антигена;

Учитывая зависимость отформы нейтрализации антигена иммуноглобулины делят на классы: IgA, IgM, IgG, IgE. Главное отличие специфических иммунных реакций от всœех других защитных реакций организма состоит в том, что генетически запрограммированы не определœенные продукты, нейтрализующие определœенные антигены, а способность вырабатывать антитела в ответ на проникновение любого антигена, способные нейтрализовать только данный антиген. Благодаря этому возможности специфических иммунных реакций безграничны и обеспечивают защитную реакцию против любого вероятного ифекционного агента. При этом, поскольку развиваются они только после проникновения антигена в организм и их развитие требует времени, возбудитель инфекции успевает размножаться в организме, разрушая его, что приводит к заболеванию. Иногда скорость размножения и разрушительное действие возбудителя успевают сделать организм не жизнеспособным до полного развития защитных реакций. При этом после выздоровления в организме остаются клетки ʼʼиммунологической памятиʼʼ, которые при вторичном проникновении того же антигена приведут к очень быстрому накоплению необходимых антител, и заболевания может не быть вообще или оно будет проходить в легкой форме.

Иммунодефициты – нарушения в работе иммунной системы, приводящие к недостатку или полному отсутствию продуктов тех или иных иммунных реакций.

Первичные иммунодефициты – обусловлены наследственностью. К ним относят несколько редких наследственных заболеваний и физиологический иммунодефицит новорожденных. Так как к моменту рождения формирование иммунной системы не завершено, количество антител вырабатываемых в организме ребенка до 13 лет в 1000-10 раз меньше чем у взрослого.

Вторичные иммунодефициты – развиваются в результате взаимодействия организма со средой. Основные причины:

1) любая травма вызывает временный иммунодефицит пропорциональной тяжести травмы.

2) психотропные вещества подавляющие центральную нервную систему. Любая операция под общим наркозом вызывает иммунодефицит на 2,5 месяца.

3) недостаточное белковое питание или нарушение белкового обмена веществ.

4) любой стресс.

6) компоненты выбросов транспорта и производства подавляют иммунные реакции.

Широкое распространение всœех перечисленных факторов в среде обитания современного человека привело тому, что, по данным ВОЗ до 80% населœения Земли постоянно или периодически имеет ту или иную форму иммунодефицита͵ что и является главным фактором распространения ВИЧ-инфекции.

ВИЧ (вирус иммунодефицита человека) – единственная инфекция, которая не сопровождается иммунодефицитом, а вызывает его. ВИЧ инфицирует Т- лимфоциты – помощники (Th), главная роль которых в распознавании своих и чужих антигенов, без их сигнала антитела не начинают вырабатываться. После заражения клетки вирус непредсказуемо долго остается в ней малоактивным: не размножается и не разрушает зараженные клетки. Но такая клетка синтезирует некоторые вирусные белки, и, так как в данный период иммунная система работает еще нормально, эти вирусные белки распознаются как чужие антигены и на них вырабатываются антитела. По наличию в сыворотке крови антител и ставится диагноз на скрытое ВИЧ–носительство.

При активизации вируса зараженные клетки образуют множество новых вирусов. Οʜᴎ выходят из клетки, разрушая её, и тут же заражают и разрушает другие. Так как из-за массовой гибели Th иммунная система, перестает распознавать чужие антигены, прекращается выработка антител на всœе инфекции. Развивается СПИД, при котором человек заболевает множеством инфекционных заболеваний сразу, и его жизнь поддерживается только комплексом современных антибиотиков, сдерживающих размножение возбудителœей.

Передача ВИЧ происходит половым путем или при попадании вируса в кровь. При этом проникновение вируса в кровь не всœегда приводит к инфицированию. На 1999 год из 2003 человек (работников исследовательских учреждений, которым вирус в результате аварии гарантировано попадал в кровь), инфицированными оказались только 5 человек. Исследования показали, что инфицирование организма через кровь возможно в том случае, в случае если иммунная система в состоянии иммунодефицита. Это объясняет высокий процент заражения половым путем, т.к. половые пути максимально изолированы от действия продуктов иммунных реакций. Большой % заражения в медицинских учреждениях объясняется тем, что стресс в результате болезни, оперативное вмешательство, различные препараты подавляют иммунную систему. Широкое распространение ВИЧ среди наркоманов также объясняется иммунодефицитом, вызванным постоянным потреблением наркотиков.

Защита организма от проникновения ксенобиотиков - понятие и виды. Классификация и особенности категории "Защита организма от проникновения ксенобиотиков" 2017, 2018.

Лекарственные вещества и промышленные загрязнения, пестициды и продукты бытовой химии, пищевые добавки и консерванты - вот тот поток чужеродных соединений, который со всевозрастающей силой обрушивается на нашу планету и живущие на ней организмы.

Эти синтетические компоненты добавляются к огромному разнообразию чужеродных веществ природного происхождения, которые образуются растениями, грибами, бактериями и другими организмами. Недаром эти соединения получили название «ксенобиотики», т. е. «чуждые жизни ».

В столь острой ситуации все живое давно бы оказалось под угрозой гибели, если бы не обладало механизмами, неустанно поддерживающими свою «химическую чистоту». Организмы высших животных и человека в ответ на введение антигенов образуют антитела ц тем самым нейтрализуют их воздействие на организм. Однако антигенными свойствами, т. е. способностью вызывать образование антител, обладают только высокомолекулярные ксенобиотики - белки, гликопротеиды, некоторые полисахариды и нуклеиновые кислоты. А как же обезвреживаются ксенобиотики низкомолекулярные? Исследования показали, что такую функцию берет на себя цитохром Р-450-оксигеназная система, присутствующая в печени млекопитающих.

Недаром говорят о «барьерной» роли печени, которая является своеобразным фильтром, очищающим организм от вредных веществ. С помощью этой ферментной системы превращаются и тем самым обезвреживаются многие ядовитые для организма неполярные, а значит, нерастворимые в воде соединения - лекарственные вещества, наркотики и др. Задача этой системы - превращение нерастворимых соединений в растворимые в воде, с тем чтобы можно было вывести их из организма.

Цитохром Р-450 обнаружен у многих животных, растений и бактерий. Его нет у бактерий-анаэробов, живущих в бескислородных условиях.

А. И. Арчаков называет цитохром Р-450 «мембранным иммуноглобулином». Последний находится в мембранах эндоплазматического ретикулума. К 4980 г. было известно не менее 20 форм цитохрома Р-450. Множественность форм характерна именно для высших организмов, тогда как бактерии содержат лишь один тип цитохрома Р-450.

Существование множественных форм, вероятно, объясняет широкую субстратную специфичность оксигеназной системы, которая может окислять самые различные молекулы. Предполагается, что в ответ на введение в организм определенного класса ксенобиотиков синтезируется и определенная группа цитохрома Р-450, подобно тому как в ответ на введение макромолекулярного антигена возникают строго комплементарные к нему антитела.

Таким образом, в организме млекопитающих существуют две системы иммунологического надзора. Первая из них - лимфоидная система, уничтожающая клетки и высокомолекулярные соединения, вторая - монооксигеназная система, детоксицирующая ксенобиотики. Если первая иммунная система защищает организм от чужеродных макромолекул, то вторая - от чужеродных низкомолекулярных веществ. Предполагается, что иногда обе иммунологические системы действуют в совокупности. После окисления оксигеназной системой ксенобиотика его окисленная форма связывается с определенным белком. Образовавшийся коньюгат приобретает антигенные свойства и начинает вызывать образование антител. Роль коньюгазы опять-таки выполняет цитохром Р-450. Получается, что ксенобиотик, попадая в организм животного, индуцирует не только свое окисление, но и биосинтез соответствующих антител.

С помощью оксигеназной системы окисляются не только экзогенные ксенобиотики, но и ряд эндогенных (внутренних), образующихся в организме: стероидные гормоны, жирные кислоты, простагландины и др.

В печени млекопитающих существует еще одна система, помогающая им убирать из организма ксенобиотики. Это присоединение, или конъюгация, к различного рода лекарствам, ядам, наркотикам и другим соединениям глютатиона, в результате чего ксенобиотики обезвреживаются, а затем и выводятся из организма.

Однако в действии обезвреживающих систем бывают и осечки. Известны случаи, когда эти системы, стремясь обезвредить какое-нибудь токсическое вещество, превращают его в канцероген, т. е. в соединение, способное вызывать злокачественную опухоль.

Все, что сказано, относится к системам обезвреживания ксенобиотиков в организмах млекопитающих, где эти процессы усиленно исследовались и продолжают исследоваться, А как обстоит дело у растений? Вопрос далеко не праздный, поскольку именно растениям приходится в основном принимать на себя тот бесконечный поток чужеродных веществ, который сам человек и созданная им промышленность обрушивают на их поверхность. К сожалению, такие исследования если и проводились, то в крайне ограниченном количестве. А те сведения, которыми мы располагаем, в основном относятся к способности растительных тканей превращать гербициды (главным образом 2,4-дихлорфеиолуксусную кислоту), а также некоторые инсектициды. Даже знаменитый ДДТ в этом отношении до сих пор остается почти неисследованным, более того, существует мнение, что растения не в состоянии ею метаболизировать.

Однако те ограниченные сведения, которые все же имеются в литературе, позволяют заключить, что и у растений имеются системы детоксикации ксенобиотиков, напоминающие по своим свойствам оксигеназную систему микросом печени млекопитающих. В составе растений, принадлежащих к 20 видам, обнаружен цитохром Р-450, спектральные характеристики которого удивительно похожи на спектры соответствующих цитохромов из печени млекопитающих. В микросомах более чем 20 видов растений обнаружено наличие оксигеназной активности, способной превращать ряд ксенобиотиков. Эта ферментная система зависит от наличия липидного кофактора и подавляется теми же ингибиторами, что и оксигеназы из микросом печени. У растений присутствует также ряд ферментов, ответственных за присоединение к гербицидам глютатиона. Предполагают, что такой механизм обезвреживания может объяснить нечувствительность некоторых растений к гербицидам.

Получение прямых доказательств участия монооксигеназной системы в способности растений детоксицировать экзогенные и эндогенные ксенобиотики и тем самым поддерживать свой химический гомеостаз, нуждается в более пристальном внимании фитоиммунологов, чем то, которое до сих пор ему уделялось. Не исключено, что результаты этих исследований покажут, что растения на нашей планете функционируют не только как «зеленые легкие», образуя кислород в процессе фотосинтеза, но и как «зеленая печень», осуществляющая метаболизм ксенобиотиков и защищающая биосферу от загрязнения.