Методы биоинформатики. Профессия — биоинформатик

Введение

Биоинформатика стала важной частью многих областей биологии. В экспериментальной молекулярной биологии методы биоинформатики, такие как создание изображений и обработка сигналов , позволяют получать полезные результаты из большого количества исходных данных. В области генетики и геномики, биоинформатика помогает в упорядочивании и аннотировании геномов и наблюдаемых мутаций. Она играет роль в анализе данных из биологической литературы и развитии биологических и генетических онтологий по организации и запросу биологических данных. Она играет роль в анализе гена, экспрессии белка и регуляции. Инструменты биоинформатики помогают в сравнении генетических и геномных данных и, в целом, в понимании эволюционных аспектов молекулярной биологии. В общем виде, она помогает анализировать и каталогизировать биологические пути и сети, которые являются важной частью системной биологии. В структурной биологии, она помогает в симуляции и моделировании ДНК, РНК и белковых структур, а также молекулярных взаимодействий.

История

Опираясь на признание важной роли передачи, хранения и обработки информации в биологических системах, в 1970 году Полина Хогевег ввела термин «биоинформатика», определив его как изучение информационных процессов в биотических системах . Это определение проводит параллель биоинформатики с биофизикой (учение о физических процессах в биологических системах) или с биохимией (учение о химических процессах в биологических системах) .

В начале «геномной революции» термин «биоинформатика» был переоткрыт и обозначал создание и техническое обслуживание базы данных для хранения биологической информации

Последовательности . Компьютеры стали необходимыми в молекулярной биологии , когда белковые последовательности стали доступны после того, как Фредерик Сенгер определил последовательность инсулина в начале 1950-х. Сравнение нескольких последовательностей вручную оказалось непрактичным. Пионером в этой области была Маргарет Окли Дэйхоф (Margaret Oakley Dayhoff). Дэвид Липман (директор Национального центра биотехнологической информации) назвал её «матерью и отцом биоинформатики». Дэйхоф составила одну из первых баз последовательностей белков, первоначально опубликовав в виде книг и стала первооткрывателем методов выравнивания последовательностей и молекулярной эволюции.

Геномы . Поскольку полные последовательности генома стали доступны, снова с новаторской работой Фредерика Сенгера термин «биоинформатика» был переоткрыт и обозначал создание и техническое обслуживание баз данных для хранения биологической информации, такой как последовательности нуклеотидов (база данных GenBank в 1982). Создание таких баз данных включало в себя не только вопросы оформления, но и создание комплексного интерфейса, позволяющего исследователям запрашивать имеющиеся данные и добавлять новые. С публичной доступностью данных, инструменты для их обработки были быстро разработаны и описаны в таких журналах, как «Исследование Нуклеиновых Кислот», который опубликовал специализированные вопросы по инструментам биоинформатики уже в 1982 году.

Цели

Главная цель биоинформатики - способствовать пониманию биологических процессов. Отличие биоинформатики от других подходов состоит в том, что она фокусируется на создании и применении интенсивных вычислительных методов для достижения этой цели. Примеры подобных методов: распознавание образов , data mining , алгоритмы машинного обучения и визуализация биологических данных . Основные усилия исследователей направлены на решение задач выравнивания последовательностей , нахождения генов (поиск региона ДНК, кодирующего гены), расшифровки генома, конструирования лекарств, разработки лекарств, выравнивания структуры белка, предсказания структуры белка , предсказания экспрессии генов и взаимодействий «белок-белок», полногеномного поиска ассоциаций и моделирования эволюции.

Биоинформатика сегодня подразумевает создание и совершенствование баз данных, алгоритмов, вычислительных и статистических методов и теории для решения практических и теоретических проблем, возникающих при управлении и анализе биологических данных.

Основные области исследований

Анализ генетических последовательностей

Оценка биологического разнообразия

Основные биоинформатические программы

  • ACT (Artemis Comparison Tool) - геномный анализ
  • Arlequin - анализ популяционно-генетических данных
  • Bioconductor - масштабный FLOSS -проект, предоставляющий множество отдельных пакетов для биоинформатических исследований. Написан на .
  • BioEdit
  • BioNumerics - коммерческий универсальный пакет программ
  • BLAST - поиск родственных последовательностей в базе данных нуклеотидных и аминокислотных последовательностей
  • Clustal - множественное выравнивание нуклеотидных и аминокислотных последовательностей
  • DnaSP - анализ полиморфизма последовательностей ДНК
  • FigTree - редактор филогенетических деревьев
  • Genepop
  • Genetix - популяционно-генетический анализ (программа доступна только на французском языке)
  • JalView - редактор множественного выравнивания нуклеотидных и аминокислотных последовательностей
  • MacClade - коммерческая программа для интерактивного эволюционного анализа данных
  • MEGA - молекулярно-эволюционный генетический анализ
  • Mesquite - программа для сравнительной биологии на языке Java
  • Muscle - множественное сравнение нуклеотидных и аминокислотных последовательностей. Более быстрая и точная по сравнению с ClustalW
  • PAUP - филогенетический анализ с использованием метода парсимонии (и других методов)
  • PHYLIP - пакет филогенетических программ
  • Phylo_win - филогенетический анализ. Программа имеет графический интерфейс.
  • PopGene - анализ генетического разнообразия популяций
  • Populations - популяционно-генетический анализ
  • PSI Protein Classifier - обобщение результатов, полученных с помощью программы PSI-BLAST
  • Seaview - филогенетический анализ (с графическим интерфейсом)
  • Sequin - депонирование последовательностей в GenBank , EMBL , DDBJ
  • SPAdes - сборщик бактериальных геномов
  • SplitsTree - программа для построения филогенетических деревьев
  • T-Coffee - множественное прогрессивное выравнивание нуклеотидных и аминокислотных последовательностей. Более чувствительное, чем в ClustalW /ClustalX .
  • UGENE - свободный русскоязычный инструмент, множественное выравнивание нуклеотидных и аминокислотных последовательностей, филогенетический анализ, аннотирование, работа с базами данных.
  • Velvet - сборщик геномов
  • ZENBU - обобщение результатов

Биоинформатика и вычислительная биология

Под биоинформатикой понимают любое использование компьютеров для обработки биологической информации. На практике, иногда это определение более узкое, под ним понимают использование компьютеров для обработки экспериментальных данных по структуре биологических макромолекул (

Биоинформа́тика - в настоящее время, данным термином обозначаются любые попытки биологов ввести обобщения эвристического толка на гигантские массивы биологических данных. До недавнего времени (2000-2002г), под биоинформатикой подразумевалось, в большинстве случаев, использование процедур сравнения символьных последовательностей (аминокислотные последовательности белков, нуклеотидные последовательности ДНК и РНК). После публикации последовательности генома человека в начале 2000-х годов стало ясно, что сравнение символьных последовательностей само по себе не позволяет дать ответ на вопросы о функции генов и белков. Поэтому, сейчас происходит разворот в сторону более широкого понимания биоинформатики как "менеджмента разнородных биологических данных" (см. https://www.novapublishers.com/catalog/product_info.php?products_id=4277).

Терминология

Лексический анализ слова "биоинформатика" указывает на приставку "био-" (от греч.. Однако, как это не парадоксально, "биоинформатика" (англ. bioinformatics), до недавнего времени, не имела практически ничего общего с "информатикой" (англ. "computer science"). В этом легко убедится, проведя поиски по этим ключевым словам в базах данных публикаций по всем областям биологии, включая биоинформатику. В базе данных MEDLINE содержится почти 20 млн абстрактов (см. http://www.ncbi.nlm.nih.gov/sites/entrez). В среде биологов, под биоинформатикой понимают использование компьютеров для обработки экспериментальных данных по структуре биологических макромолекул белков и нуклеиновых кислот с целью получения биологически значимой информации. Основные усилия исследователей в этой области направлены на изучение геномов , анализ и распознавание (менее приемлемый термин "предсказание") структуры белков , анализ и распознавание ("предсказание") взаимодействий молекул белков различных типов друг с другом и др.

Термины биоинформатика и «вычислительная биология » часто употребляются как синонимы, хотя каждый автор в данной области придумывает, как правило, свои собственные определения для каждого. Иногда считают, что не всякое использование вычислительных методов в биологии является биоинформатикой, например, математическое моделирование биологических процессов - это не биоинформатика.

Основные области исследований

Анализ генетических последовательностей

Начиная с середины 1970-х, было поределено более 100 млн нуклеотидных последовательностей генов различных организмов. Эти данные используются для определения последовательностей белков и регуляторных участков. Сравнение генов в рамках одного или разных видов может продемонстрировать сходство функций белков или отношения между видами (таким образом могут быть составлены филогенетические деревья). С возрастанием количества данных уже давно стало невозможным вручную анализировать последовательности. В наши дни для поиска по геномам тысяч организмов, состоящих из миллиардов пар нуклеотидов используются компьютерные программы. Программы могут однозначно сопоставить («выровнять») похожие последовательности ДНК в геномах разных видов; часто такие последовательности несут сходные функции, а различия возникают в результате мелких мутаций, таких как замены отдельных нуклеотидов, вставки нуклеотидов, и их «выпадения» (делеции). Один из вариантов такого выравнивания применяется при самом процессе секвенирования. Так называемая техника «дробного секвенирования» (которая была, например, использована для секвенирования первого бактериального генома, Haemophilus influenzae ) вместо полной последовательности нуклеотидов даёт последовательности коротких фрагментов ДНК (каждый длиной около 600-800 нуклеотидов). Концы фрагментов накладываются друг на друга и, совмещённые должным образом, дают полный геном. Такой метод быстро даёт результаты секвенирования, но сборка фрагментов может быть довольно сложной задачей для больших геномов. В проекте по расшифроке генома человека сборка заняла несколько месяцев компьютерного времени. Сейчас этот метод применяется для практически всех геномов, и алгоритмы сборки геномов являются одной из острейших проблем биоинформатики на сегодняшний момент.

Другим примером применения компьютерного анализа последовательностей является автоматический поиск генов и регуляторных последовательностей в геноме. Не все нуклеотиды в геноме используются для задания последовательностей белков. Например, в геномах высших организмов, большие сегменты ДНК явно не кодируют белки и их функциональная роль неизвестна. Разработка алгоритмов выявления кодирующих белки участков генома является важной задачей современной биоинформатики.

Биоинформатика помогает связать геномные и протеомные проекты, к примеру, помогая в использовании последовательности ДНК для идентификации белков.

Аннотация геномов

В контексте геномики аннотация - процесс маркировки генов и других объектов в последовательности ДНК.

Основные программы сравнения аминокислотных и нуклеотидных последовательностей

  • ACT (Artemis Comparison Tool) - геномный анализ
  • Arlequin - анализ популяционно-генетических данных
  • BioEdit
  • BioNumerics - коммерческий универсальный пакет программ
  • BLAST - поиск родственных последовательностей в базе данных нуклеотидных и аминокислотных последовательностей
  • ClustalW
  • ClustalX - множественное выравнивание нуклеотидных и аминокислотных последовательностей
  • FASTA - набор алгоритмов определения схожести нуклеотидных и аминокислотных последовательностей
  • JalView - редактор множественного выравнивания нуклеотидных и аминокислотных последовательностей
  • Mesquite - программа для сравнительной биологии на языке Java
  • Muscle - множественное сравнение нуклеотидных и аминокислотных последовательностей. Более быстрая и точная по сравнению с

Если спросить случайного прохожего, что такое биология, он наверняка ответит что-то вроде «наука о живой природе». Про информатику скажет, что она имеет дело с компьютерами и информацией. Если мы не побоимся быть навязчивыми и зададим ему третий вопрос – что такое биоинформатика? – тут-то он наверняка и растеряется. Логично: про эту область знаний даже в ЕРАМ знает далеко не каждый – хотя в нашей компании и биоинформатики есть. Давайте разбираться, для чего эта наука нужна человечеству вообще и ЕРАМ в частности: в конце концов, вдруг нас на улице об этом спросят.

Почему биология перестала справляться без информатики и при чем тут рак

Чтобы провести исследование, биологам уже недостаточно взять анализы и посмотреть в микроскоп. Современная биология имеет дело с колоссальными объемами данных. Часто обработать их вручную просто невозможно, поэтому многие биологические задачи решаются вычислительными методами. Не будем далеко ходить: молекула ДНК настолько мала, что разглядеть ее под световым микроскопом нельзя. А если и можно (под электронным), всё равно визуальное изучение не помогает решить многих задач.

ДНК человека состоит из трех миллиардов нуклеотидов – чтобы вручную проанализировать их все и найти нужный участок, не хватит и целой жизни. Ну, может и хватит – одной жизни на анализ одной молекулы – но это слишком долго, дорого и малопродуктивно, так что геном анализируют при помощи компьютеров и вычислений.

Биоинформатика - это и есть весь набор компьютерных методов для анализа биологических данных: прочитанных структур ДНК и белков, микрофотографий, сигналов, баз данных с результатами экспериментов и т. д.

Иногда секвенировать ДНК нужно, чтобы подобрать правильное лечение. Одно и то же заболевание, вызванное разными наследственными нарушениями или воздействием среды, нужно лечить по-разному. А еще в геноме есть участки, которые не связаны с развитием болезни, но, например, отвечают за реакцию на определенные виды терапии и лекарств. Поэтому разные люди с одним и тем же заболеванием могут по-разному реагировать на одинаковое лечение.

Еще биоинформатика нужна, чтобы разрабатывать новые лекарства. Их молекулы должны иметь определенную структуру и связываться с определенным белком или участком ДНК. Смоделировать структуру такой молекулы помогают вычислительные методы.

Достижения биоинформатики широко применяют в медицине, в первую очередь в терапии рака. В ДНК зашифрована информация о предрасположенности и к другим заболеваниям, но над лечением рака работают больше всего. Это направление считается самым перспективным, финансово привлекательным, важным – и самым сложным.

Биоинформатика в ЕРАМ

В ЕРАМ биоинформатикой занимается подразделение Life Sciences. Там разрабатывают программное обеспечение для фармкомпаний, биологических и биотехнологических лабораторий всех масштабов - от стартапов до ведущих мировых компаний. Справиться с такой задачей могут только люди, которые разбираются в биологии, умеют составлять алгоритмы и программировать.

Биоинформатики – гибридные специалисты. Сложно сказать, какое знание для них первично: биология или информатика. Если так ставить вопрос, им нужно знать и то и другое. В первую очередь важны, пожалуй, аналитический склад ума и готовность много учиться. В ЕРАМ есть и биологи, которые доучились информатике, и программисты с математиками, которые дополнительно изучали биологию.

Как становятся биоинформатиками

Мария Зуева, разработчик:

«Я получила стандартное ИТ-образование, потом училась на курсах ЕРАМ Java Lab, где увлеклась машинным обучением и Data Science. Когда я выпускалась из лаборатории, мне сказали: «Сходи в Life Sciences, там занимаются биоинформатикой и как раз набирают людей». Не лукавлю: тогда я услышала слово «биоинформатика» в первый раз. Прочитала про нее на Википедии и пошла.

Тогда в подразделение набрали целую группу новичков, и мы вместе изучали биоинформатику. Начали с повторения школьной программы про ДНК и РНК, затем подробно разбирали существующие в биоинформатике задачи, подходы к их решению и алгоритмы, учились работать со специализированным софтом».

«По образованию я биофизик, в 2012-м защитил кандидатскую по генетике. Какое-то время работал в науке, занимался исследованиями – и продолжаю до сих пор. Когда появилась возможность применить научные знания в производстве, я тут же за нее ухватился.

Для бизнес-аналитика у меня весьма специфическая работа. Например, финансовые вопросы проходят мимо меня, я скорее эксперт по предметной области. Я должен понять, чего от нас хотят заказчики, разобраться в проблеме и составить высокоуровневую документацию – задание для программистов, иногда сделать работающий прототип программы. По ходу проекта я поддерживаю контакт с разработчиками и заказчиками, чтобы те и другие были уверены: команда делает то, что от нее требуется. Фактически я переводчик с языка заказчиков – биологов и биоинформатиков – на язык разработчиков и обратно».

Как читают геном

Чтобы понять суть биоинформатических проектов ЕРАМ, сначала нужно разобраться, как секвенируют геном. Дело в том, что проекты, о которых мы будем говорить, напрямую связаны с чтением генома. Обратимся за объяснением к биоинформатикам.

Михаил Альперович, глава юнита биоинформатики:

«Представьте, что у вас есть десять тысяч экземпляров «Войны и мира». Вы пропустили их через шредер, хорошенько перемешали, наугад вытащили из этой кучи ворох бумажных полосок и пытаетесь собрать из них исходный текст. Вдобавок у вас есть рукопись «Войны и мира». Текст, который вы соберете, нужно будет сравнить с ней, чтобы отловить опечатки (а они обязательно будут). Примерно так же читают ДНК современные машины-секвенаторы. ДНК выделяют из клеточных ядер и делят на фрагменты по 300–500 пар нуклеотидов (мы помним, что в ДНК нуклеотиды связаны друг с другом попарно). Молекулы дробят, потому что ни одна современная машина не может прочитать геном от начала до конца. Последовательность слишком длинная, и по мере ее прочтения накапливаются ошибки.

Вспоминаем «Войну и мир» после шредера. Чтобы восстановить исходный текст романа, нам нужно прочитать и расположить в правильном порядке все кусочки романа. Получается, что мы читаем книгу несколько раз по крошечным фрагментам. То же с ДНК: каждый участок последовательности секвенатор прочитывает с многократным перекрытием – ведь мы анализируем не одну, а множество молекул ДНК.

Полученные фрагменты выравнивают – «прикладывают» каждый из них к эталонному геному и пытаются понять, какому участку эталона соответствует прочитанный фрагмент. Затем в выравненных фрагментах находят вариации – значащие отличия прочтений от эталонного генома (опечатки в книге по сравнению с эталонной рукописью). Этим занимаются программы – вариант-коллеры (от англ. variant caller – выявитель мутаций). Это самая сложная часть анализа, поэтому различных программ – вариант-коллеров много и их постоянно совершенствуют и разрабатывают новые.

Подавляющее большинство найденных мутаций нейтральны и ни на что не влияют. Но есть и такие, в которых зашифрованы предрасположенность к наследственным заболеваниям или способность откликаться на разные виды терапии».

Для анализа берут образец, в котором находится много клеток - а значит, и копий полного набора ДНК клетки. Каждый маленький фрагмент ДНК прочитывают несколько раз, чтобы минимизировать вероятность ошибки. Если пропустить хотя бы одну значащую мутацию, можно поставить пациенту неверный диагноз или назначить неподходящее лечение. Прочитать каждый фрагмент ДНК по одному разу слишком мало: единственное прочтение может быть неправильным, и мы об этом не узнаем. Если мы прочитаем тот же фрагмент дважды и получим один верный и один неверный результат, нам будет сложно понять, какое из прочтений правдивое. А если у нас сто прочтений и в 95 из них мы видим один и тот же результат, мы понимаем, что он и есть верный.

Геннадий Захаров:

«Для анализа раковых заболеваний секвенировать нужно и здоровую, и больную клетку. Рак появляется в результате мутаций, которые клетка накапливает в течение своей жизни. Если в клетке испортились механизмы, отвечающие за ее рост и деление, то клетка начинает неограниченно делиться вне зависимости от потребностей организма, т. е. становится раковой опухолью. Чтобы понять, чем именно вызван рак, у пациента берут образец здоровой ткани и раковой опухоли. Оба образца секвенируют, сопоставляют результаты и находят, чем один отличается от другого: какой молекулярный механизм сломался в раковой клетке. Исходя из этого подбирают лекарство, которое эффективно против клеток с “поломкой”».

Биоинформатика: производство и опенсорс

У подразделения биоинформатики в ЕРАМ есть и производственные, и опенсорс-проекты. Причем часть производственного проекта может перерасти в опенсорс, а опенсорсный проект – стать частью производства (например, когда продукт ЕРАМ с открытым кодом нужно интегрировать в инфраструктуру клиента).

Проект №1: вариант-коллер

Для одного из клиентов – крупной фармацевтической компании – ЕРАМ модернизировал программу вариант-коллер. Ее особенность в том, что она способна находить мутации, недоступные другим аналогичным программам. Изначально программа была написана на языке Perl и обладала сложной логикой. В ЕРАМ программу переписали на Java и оптимизировали – теперь она работает в 20, если не в 30 раз быстрее.

Исходный код программы доступен на GitHub .

Проект №2: 3D-просмотрщик молекул

Для визуализации структуры молекул в 3D есть много десктоп- и веб-приложений. Представлять, как молекула выглядит в пространстве, крайне важно, например, для разработки лекарств. Предположим, нам нужно синтезировать лекарство, обладающее направленным действием. Сначала нам потребуется спроектировать молекулу этого лекарства и убедиться, что она будет взаимодействовать с нужными белками именно так, как нужно. В жизни молекулы трехмерные, поэтому анализируют их тоже в виде трехмерных структур.

Для 3D-просмотра молекул ЕРАМ сделал онлайн-инструмент, который изначально работал только в окне браузера. Потом на основании этого инструмента разработали версию, которая позволяет визуализировать молекулы в очках виртуальной реальности HTC Vive. К очкам прилагаются контроллеры, которыми молекулу можно поворачивать, перемещать, подставлять к другой молекуле, поворачивать отдельные части молекулы. Делать всё это в 3D куда удобнее, чем на плоском мониторе. Эту часть проекта биоинформатики ЕРАМ делали совместно с подразделением Virtual Reality, Augmented Reality and Game Experience Delivery.

Программа только готовится к публикации на GitHub, зато пока есть , по которой можно посмотреть ее демо-версию.

Как выглядит работа с приложением, можно узнать из видео .

Проект №3: геномный браузер NGB

Геномный браузер визуализирует отдельные прочтения ДНК, вариации и другую информацию, сгенерированную утилитами для анализа генома. Когда прочтения сопоставлены с эталонным геномом и мутации найдены, ученому остается проконтролировать, правильно ли сработали машины и алгоритмы. От того, насколько точно выявлены мутации в геноме, зависит, какой диагноз поставят пациенту или какое лечение ему назначат. Поэтому в клинической диагностике контролировать работу машин должен ученый, а помогает ему в этом геномный браузер.

Биоинформатикам-разработчикам геномный браузер помогает анализировать сложные случаи, чтобы найти ошибки в работе алгоритмов и понять, как их можно улучшить.

Новый геномный браузер NGB (New Genome Browser) от ЕРАМ работает в вебе, но по скорости и функционалу не уступает десктопным аналогам. Это продукт, которого не хватало на рынке: предыдущие онлайновые инструменты работали медленнее и умели делать меньше, чем десктопные. Сейчас многие клиенты выбирают веб-приложения из соображений безопасности. Онлайн-инструмент позволяет ничего не устанавливать на рабочий компьютер ученого. С ним можно работать из любой точки мира, зайдя на корпоративный портал. Ученому не обязательно всюду возить за собой рабочий компьютер и скачивать на него все необходимые данные, которых может быть очень много.

Геннадий Захаров, бизнес-аналитик:

«Над опенсорсными утилитами я работал частично как заказчик: ставил задачу. Я изучал лучшие решения на рынке, анализировал их преимущества и недостатки, искал, как можно их усовершенствовать. Нам нужно было сделать веб-решения не хуже десктопных аналогов и при этом добавить в них что-то уникальное.

В 3D-просмотрщике молекул это была работа с виртуальной реальностью, а в геномном браузере – улучшенная работа с вариациями. Мутации бывают сложными. Перестройки в раковых клетках иногда затрагивают огромные области. В них появляются лишние хромосомы, куски хромосом и целые хромосомы исчезают или объединяются в случайном порядке. Отдельные куски генома могут копироваться по 10–20 раз. Такие данные, во-первых, сложнее получить из прочтений, а во-вторых, сложнее визуализировать.

Мы разработали визуализатор, который правильно читает информацию о таких протяженных структурных перестройках. Еще мы сделали набор визуализаций, который при контакте хромосом показывает, образовались ли из-за этого контакта гибридные белки. Если протяженная вариация затрагивает несколько белков, мы по клику можем рассчитать и показать, что происходит в результате такой вариации, какие гибридные белки получаются. В других визуализаторах ученым приходилось отслеживать эту информацию вручную, а в NGB – в один клик».

Как изучать биоинформатику

Мы уже говорили, что биоинформатики – гибридные специалисты, которые должны знать и биологию, и информатику. Самообразование играет в этом не последнюю роль. Конечно, в ЕРАМ есть вводный курс в биоинформатику, но рассчитан он на сотрудников, которым эти знания пригодятся на проекте. Занятия проводятся только в Санкт-Петербурге. И всё же, если биоинформатика вам интересна, возможность учиться есть:

Биоинформатика стала важной частью многих областей биологии. В экспериментальной молекулярной биологии методы биоинформатики, такие как создание изображений и обработка сигналов , позволяют получать полезные результаты из большого количества исходных данных. В области генетики и геномики, биоинформатика помогает в упорядочивании и аннотировании геномов и наблюдаемых мутаций. Она играет роль в анализе данных из биологической литературы и развитии биологических и генетических онтологий по организации и запросу биологических данных. Она играет роль в анализе гена, экспрессии белка и регуляции. Инструменты биоинформатики помогают в сравнении генетических и геномных данных и, в целом, в понимании эволюционных аспектов молекулярной биологии. В общем виде, она помогает анализировать и каталогизировать биологические пути и сети, которые являются важной частью системной биологии. В структурной биологии, она помогает в симуляции и моделировании ДНК, РНК и белковых структур, а также молекулярных взаимодействий.

История

Опираясь на признание важной роли передачи, хранения и обработки информации в биологических системах, в 1970 году Полина Хогевег ввела термин «биоинформатика», определив его как изучение информационных процессов в биотических системах . Это определение проводит параллель биоинформатики с биофизикой (учение о физических процессах в биологических системах) или с биохимией (учение о химических процессах в биологических системах) .

В начале «геномной революции» термин «биоинформатика» был переоткрыт и обозначал создание и техническое обслуживание базы данных для хранения биологической информации

Последовательности . Компьютеры стали необходимыми в молекулярной биологии , когда белковые последовательности стали доступны после того, как Фредерик Сенгер определил последовательность инсулина в начале 1950-х. Сравнение нескольких последовательностей вручную оказалось непрактичным. Пионером в этой области была Маргарет Окли Дэйхоф (Margaret Oakley Dayhoff). Дэвид Липман (директор Национального центра биотехнологической информации) назвал её «матерью и отцом биоинформатики». Дэйхоф составила одну из первых баз последовательностей белков, первоначально опубликовав в виде книг и стала первооткрывателем методов выравнивания последовательностей и молекулярной эволюции.

Геномы . Поскольку полные последовательности генома стали доступны, снова с новаторской работой Фредерика Сенгера термин «биоинформатика» был переоткрыт и обозначал создание и техническое обслуживание баз данных для хранения биологической информации, такой как последовательности нуклеотидов (база данных GenBank в 1982). Создание таких баз данных включало в себя не только вопросы оформления, но и создание комплексного интерфейса, позволяющего исследователям запрашивать имеющиеся данные и добавлять новые. С публичной доступностью данных, инструменты для их обработки были быстро разработаны и описаны в таких журналах, как «Исследование Нуклеиновых Кислот», который опубликовал специализированные вопросы по инструментам биоинформатики уже в 1982 году.

Цели

Главная цель биоинформатики - способствовать пониманию биологических процессов. Отличие биоинформатики от других подходов состоит в том, что она фокусируется на создании и применении интенсивных вычислительных методов для достижения этой цели. Примеры подобных методов: распознавание образов , data mining , алгоритмы машинного обучения и визуализация биологических данных. Основные усилия исследователей направлены на решение задач выравнивания последовательностей , нахождения генов (поиск региона ДНК, кодирующего гены), расшифровки генома, конструирования лекарств, разработки лекарств, выравнивания структуры белка, предсказания структуры белка , предсказания экспрессии генов и взаимодействий «белок-белок», полногеномного поиска ассоциаций и моделирования эволюции.

Биоинформатика сегодня подразумевает создание и совершенствование баз данных, алгоритмов, вычислительных и статистических методов и теории для решения практических и теоретических проблем, возникающих при управлении и анализе биологических данных.

Основные области исследований

Анализ генетических последовательностей

Оценка биологического разнообразия

Основные биоинформатические программы

  • ACT (Artemis Comparison Tool) - геномный анализ
  • Arlequin - анализ популяционно-генетических данных
  • Bioconductor - масштабный FLOSS -проект, предоставляющий множество отдельных пакетов для биоинформатических исследований. Написан на .
  • BioEdit
  • BioNumerics - коммерческий универсальный пакет программ
  • BLAST - поиск родственных последовательностей в базе данных нуклеотидных и аминокислотных последовательностей
  • Clustal - множественное выравнивание нуклеотидных и аминокислотных последовательностей
  • DnaSP - анализ полиморфизма последовательностей ДНК
  • FigTree - редактор филогенетических деревьев
  • Genepop
  • Genetix - популяционно-генетический анализ (программа доступна только на французском языке)
  • JalView - редактор множественного выравнивания нуклеотидных и аминокислотных последовательностей
  • MacClade - коммерческая программа для интерактивного эволюционного анализа данных
  • MEGA - молекулярно-эволюционный генетический анализ
  • Mesquite - программа для сравнительной биологии на языке Java
  • Muscle - множественное сравнение нуклеотидных и аминокислотных последовательностей. Более быстрая и точная по сравнению с ClustalW
  • PAUP - филогенетический анализ с использованием метода парсимонии (и других методов)
  • PHYLIP - пакет филогенетических программ
  • Phylo_win - филогенетический анализ. Программа имеет графический интерфейс.
  • PopGene - анализ генетического разнообразия популяций
  • Populations - популяционно-генетический анализ
  • PSI Protein Classifier - обобщение результатов, полученных с помощью программы PSI-BLAST
  • Seaview - филогенетический анализ (с графическим интерфейсом)
  • Sequin - депонирование последовательностей в GenBank , EMBL , DDBJ
  • SPAdes - сборщик бактериальных геномов
  • SplitsTree - программа для построения филогенетических деревьев
  • T-Coffee - множественное прогрессивное выравнивание нуклеотидных и аминокислотных последовательностей. Более чувствительное, чем в ClustalW /ClustalX .
  • UGENE - свободный русскоязычный инструмент, множественное выравнивание нуклеотидных и аминокислотных последовательностей, филогенетический анализ, аннотирование, работа с базами данных.

Если спросить случайного прохожего, что такое биология, он наверняка ответит что-то вроде «наука о живой природе». Про информатику скажет, что она имеет дело с компьютерами и информацией. Если мы не побоимся быть навязчивыми и зададим ему третий вопрос – что такое биоинформатика? – тут-то он наверняка и растеряется. Логично: про эту область знаний даже в ЕРАМ знает далеко не каждый – хотя в нашей компании и биоинформатики есть. Давайте разбираться, для чего эта наука нужна человечеству вообще и ЕРАМ в частности: в конце концов, вдруг нас на улице об этом спросят.

Почему биология перестала справляться без информатики и при чем тут рак

Чтобы провести исследование, биологам уже недостаточно взять анализы и посмотреть в микроскоп. Современная биология имеет дело с колоссальными объемами данных. Часто обработать их вручную просто невозможно, поэтому многие биологические задачи решаются вычислительными методами. Не будем далеко ходить: молекула ДНК настолько мала, что разглядеть ее под световым микроскопом нельзя. А если и можно (под электронным), всё равно визуальное изучение не помогает решить многих задач.

ДНК человека состоит из трех миллиардов нуклеотидов – чтобы вручную проанализировать их все и найти нужный участок, не хватит и целой жизни. Ну, может и хватит – одной жизни на анализ одной молекулы – но это слишком долго, дорого и малопродуктивно, так что геном анализируют при помощи компьютеров и вычислений.

Биоинформатика - это и есть весь набор компьютерных методов для анализа биологических данных: прочитанных структур ДНК и белков, микрофотографий, сигналов, баз данных с результатами экспериментов и т. д.

Иногда секвенировать ДНК нужно, чтобы подобрать правильное лечение. Одно и то же заболевание, вызванное разными наследственными нарушениями или воздействием среды, нужно лечить по-разному. А еще в геноме есть участки, которые не связаны с развитием болезни, но, например, отвечают за реакцию на определенные виды терапии и лекарств. Поэтому разные люди с одним и тем же заболеванием могут по-разному реагировать на одинаковое лечение.

Еще биоинформатика нужна, чтобы разрабатывать новые лекарства. Их молекулы должны иметь определенную структуру и связываться с определенным белком или участком ДНК. Смоделировать структуру такой молекулы помогают вычислительные методы.

Достижения биоинформатики широко применяют в медицине, в первую очередь в терапии рака. В ДНК зашифрована информация о предрасположенности и к другим заболеваниям, но над лечением рака работают больше всего. Это направление считается самым перспективным, финансово привлекательным, важным – и самым сложным.

Биоинформатика в ЕРАМ

В ЕРАМ биоинформатикой занимается подразделение Life Sciences. Там разрабатывают программное обеспечение для фармкомпаний, биологических и биотехнологических лабораторий всех масштабов - от стартапов до ведущих мировых компаний. Справиться с такой задачей могут только люди, которые разбираются в биологии, умеют составлять алгоритмы и программировать.

Биоинформатики – гибридные специалисты. Сложно сказать, какое знание для них первично: биология или информатика. Если так ставить вопрос, им нужно знать и то и другое. В первую очередь важны, пожалуй, аналитический склад ума и готовность много учиться. В ЕРАМ есть и биологи, которые доучились информатике, и программисты с математиками, которые дополнительно изучали биологию.

Как становятся биоинформатиками

Мария Зуева, разработчик:

«Я получила стандартное ИТ-образование, потом училась на курсах ЕРАМ Java Lab, где увлеклась машинным обучением и Data Science. Когда я выпускалась из лаборатории, мне сказали: «Сходи в Life Sciences, там занимаются биоинформатикой и как раз набирают людей». Не лукавлю: тогда я услышала слово «биоинформатика» в первый раз. Прочитала про нее на Википедии и пошла.

Тогда в подразделение набрали целую группу новичков, и мы вместе изучали биоинформатику. Начали с повторения школьной программы про ДНК и РНК, затем подробно разбирали существующие в биоинформатике задачи, подходы к их решению и алгоритмы, учились работать со специализированным софтом».

«По образованию я биофизик, в 2012-м защитил кандидатскую по генетике. Какое-то время работал в науке, занимался исследованиями – и продолжаю до сих пор. Когда появилась возможность применить научные знания в производстве, я тут же за нее ухватился.

Для бизнес-аналитика у меня весьма специфическая работа. Например, финансовые вопросы проходят мимо меня, я скорее эксперт по предметной области. Я должен понять, чего от нас хотят заказчики, разобраться в проблеме и составить высокоуровневую документацию – задание для программистов, иногда сделать работающий прототип программы. По ходу проекта я поддерживаю контакт с разработчиками и заказчиками, чтобы те и другие были уверены: команда делает то, что от нее требуется. Фактически я переводчик с языка заказчиков – биологов и биоинформатиков – на язык разработчиков и обратно».

Как читают геном

Чтобы понять суть биоинформатических проектов ЕРАМ, сначала нужно разобраться, как секвенируют геном. Дело в том, что проекты, о которых мы будем говорить, напрямую связаны с чтением генома. Обратимся за объяснением к биоинформатикам.

Михаил Альперович, глава юнита биоинформатики:

«Представьте, что у вас есть десять тысяч экземпляров «Войны и мира». Вы пропустили их через шредер, хорошенько перемешали, наугад вытащили из этой кучи ворох бумажных полосок и пытаетесь собрать из них исходный текст. Вдобавок у вас есть рукопись «Войны и мира». Текст, который вы соберете, нужно будет сравнить с ней, чтобы отловить опечатки (а они обязательно будут). Примерно так же читают ДНК современные машины-секвенаторы. ДНК выделяют из клеточных ядер и делят на фрагменты по 300–500 пар нуклеотидов (мы помним, что в ДНК нуклеотиды связаны друг с другом попарно). Молекулы дробят, потому что ни одна современная машина не может прочитать геном от начала до конца. Последовательность слишком длинная, и по мере ее прочтения накапливаются ошибки.

Вспоминаем «Войну и мир» после шредера. Чтобы восстановить исходный текст романа, нам нужно прочитать и расположить в правильном порядке все кусочки романа. Получается, что мы читаем книгу несколько раз по крошечным фрагментам. То же с ДНК: каждый участок последовательности секвенатор прочитывает с многократным перекрытием – ведь мы анализируем не одну, а множество молекул ДНК.

Полученные фрагменты выравнивают – «прикладывают» каждый из них к эталонному геному и пытаются понять, какому участку эталона соответствует прочитанный фрагмент. Затем в выравненных фрагментах находят вариации – значащие отличия прочтений от эталонного генома (опечатки в книге по сравнению с эталонной рукописью). Этим занимаются программы – вариант-коллеры (от англ. variant caller – выявитель мутаций). Это самая сложная часть анализа, поэтому различных программ – вариант-коллеров много и их постоянно совершенствуют и разрабатывают новые.

Подавляющее большинство найденных мутаций нейтральны и ни на что не влияют. Но есть и такие, в которых зашифрованы предрасположенность к наследственным заболеваниям или способность откликаться на разные виды терапии».

Для анализа берут образец, в котором находится много клеток - а значит, и копий полного набора ДНК клетки. Каждый маленький фрагмент ДНК прочитывают несколько раз, чтобы минимизировать вероятность ошибки. Если пропустить хотя бы одну значащую мутацию, можно поставить пациенту неверный диагноз или назначить неподходящее лечение. Прочитать каждый фрагмент ДНК по одному разу слишком мало: единственное прочтение может быть неправильным, и мы об этом не узнаем. Если мы прочитаем тот же фрагмент дважды и получим один верный и один неверный результат, нам будет сложно понять, какое из прочтений правдивое. А если у нас сто прочтений и в 95 из них мы видим один и тот же результат, мы понимаем, что он и есть верный.

Геннадий Захаров:

«Для анализа раковых заболеваний секвенировать нужно и здоровую, и больную клетку. Рак появляется в результате мутаций, которые клетка накапливает в течение своей жизни. Если в клетке испортились механизмы, отвечающие за ее рост и деление, то клетка начинает неограниченно делиться вне зависимости от потребностей организма, т. е. становится раковой опухолью. Чтобы понять, чем именно вызван рак, у пациента берут образец здоровой ткани и раковой опухоли. Оба образца секвенируют, сопоставляют результаты и находят, чем один отличается от другого: какой молекулярный механизм сломался в раковой клетке. Исходя из этого подбирают лекарство, которое эффективно против клеток с “поломкой”».

Биоинформатика: производство и опенсорс

У подразделения биоинформатики в ЕРАМ есть и производственные, и опенсорс-проекты. Причем часть производственного проекта может перерасти в опенсорс, а опенсорсный проект – стать частью производства (например, когда продукт ЕРАМ с открытым кодом нужно интегрировать в инфраструктуру клиента).

Проект №1: вариант-коллер

Для одного из клиентов – крупной фармацевтической компании – ЕРАМ модернизировал программу вариант-коллер. Ее особенность в том, что она способна находить мутации, недоступные другим аналогичным программам. Изначально программа была написана на языке Perl и обладала сложной логикой. В ЕРАМ программу переписали на Java и оптимизировали – теперь она работает в 20, если не в 30 раз быстрее.

Исходный код программы доступен на GitHub .

Проект №2: 3D-просмотрщик молекул

Для визуализации структуры молекул в 3D есть много десктоп- и веб-приложений. Представлять, как молекула выглядит в пространстве, крайне важно, например, для разработки лекарств. Предположим, нам нужно синтезировать лекарство, обладающее направленным действием. Сначала нам потребуется спроектировать молекулу этого лекарства и убедиться, что она будет взаимодействовать с нужными белками именно так, как нужно. В жизни молекулы трехмерные, поэтому анализируют их тоже в виде трехмерных структур.

Для 3D-просмотра молекул ЕРАМ сделал онлайн-инструмент, который изначально работал только в окне браузера. Потом на основании этого инструмента разработали версию, которая позволяет визуализировать молекулы в очках виртуальной реальности HTC Vive. К очкам прилагаются контроллеры, которыми молекулу можно поворачивать, перемещать, подставлять к другой молекуле, поворачивать отдельные части молекулы. Делать всё это в 3D куда удобнее, чем на плоском мониторе. Эту часть проекта биоинформатики ЕРАМ делали совместно с подразделением Virtual Reality, Augmented Reality and Game Experience Delivery.

Программа только готовится к публикации на GitHub, зато пока есть , по которой можно посмотреть ее демо-версию.

Как выглядит работа с приложением, можно узнать из видео .

Проект №3: геномный браузер NGB

Геномный браузер визуализирует отдельные прочтения ДНК, вариации и другую информацию, сгенерированную утилитами для анализа генома. Когда прочтения сопоставлены с эталонным геномом и мутации найдены, ученому остается проконтролировать, правильно ли сработали машины и алгоритмы. От того, насколько точно выявлены мутации в геноме, зависит, какой диагноз поставят пациенту или какое лечение ему назначат. Поэтому в клинической диагностике контролировать работу машин должен ученый, а помогает ему в этом геномный браузер.

Биоинформатикам-разработчикам геномный браузер помогает анализировать сложные случаи, чтобы найти ошибки в работе алгоритмов и понять, как их можно улучшить.

Новый геномный браузер NGB (New Genome Browser) от ЕРАМ работает в вебе, но по скорости и функционалу не уступает десктопным аналогам. Это продукт, которого не хватало на рынке: предыдущие онлайновые инструменты работали медленнее и умели делать меньше, чем десктопные. Сейчас многие клиенты выбирают веб-приложения из соображений безопасности. Онлайн-инструмент позволяет ничего не устанавливать на рабочий компьютер ученого. С ним можно работать из любой точки мира, зайдя на корпоративный портал. Ученому не обязательно всюду возить за собой рабочий компьютер и скачивать на него все необходимые данные, которых может быть очень много.

Геннадий Захаров, бизнес-аналитик:

«Над опенсорсными утилитами я работал частично как заказчик: ставил задачу. Я изучал лучшие решения на рынке, анализировал их преимущества и недостатки, искал, как можно их усовершенствовать. Нам нужно было сделать веб-решения не хуже десктопных аналогов и при этом добавить в них что-то уникальное.

В 3D-просмотрщике молекул это была работа с виртуальной реальностью, а в геномном браузере – улучшенная работа с вариациями. Мутации бывают сложными. Перестройки в раковых клетках иногда затрагивают огромные области. В них появляются лишние хромосомы, куски хромосом и целые хромосомы исчезают или объединяются в случайном порядке. Отдельные куски генома могут копироваться по 10–20 раз. Такие данные, во-первых, сложнее получить из прочтений, а во-вторых, сложнее визуализировать.

Мы разработали визуализатор, который правильно читает информацию о таких протяженных структурных перестройках. Еще мы сделали набор визуализаций, который при контакте хромосом показывает, образовались ли из-за этого контакта гибридные белки. Если протяженная вариация затрагивает несколько белков, мы по клику можем рассчитать и показать, что происходит в результате такой вариации, какие гибридные белки получаются. В других визуализаторах ученым приходилось отслеживать эту информацию вручную, а в NGB – в один клик».

Как изучать биоинформатику

Мы уже говорили, что биоинформатики – гибридные специалисты, которые должны знать и биологию, и информатику. Самообразование играет в этом не последнюю роль. Конечно, в ЕРАМ есть вводный курс в биоинформатику, но рассчитан он на сотрудников, которым эти знания пригодятся на проекте. Занятия проводятся только в Санкт-Петербурге. И всё же, если биоинформатика вам интересна, возможность учиться есть: